CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 74-82.DOI: 10.11949/0438-1157.20230672
• Reviews and monographs • Previous Articles Next Articles
Xinyu WANG1(), Yongtao WANG1, Jia YAO1, Haoran LI1,2()
Received:
2023-07-03
Revised:
2023-09-13
Online:
2024-03-11
Published:
2024-01-25
Contact:
Haoran LI
通讯作者:
李浩然
作者简介:
王欣雨(1989—),女,博士,实验师,wxy789819@126.com
基金资助:
CLC Number:
Xinyu WANG, Yongtao WANG, Jia YAO, Haoran LI. Progress in the application of electron paramagnetic resonance in fundamental chemical engineering research[J]. CIESC Journal, 2024, 75(1): 74-82.
王欣雨, 王永涛, 姚加, 李浩然. 电子顺磁共振技术在化工基础研究中的应用进展[J]. 化工学报, 2024, 75(1): 74-82.
Add to citation manager EndNote|Ris|BibTeX
Fig. 4 EPR signal of radical adducts of EO-BDD [(ⅰ) EO-BDD in sulfate medium, DMPO with SO4-·(■), (ⅱ) EO-BDD in a real matrix containing sulfate, chloride, and carbonate, (ⅲ) EO-BDD in persulfate medium, TEMP with 1O2(▲), (ⅳ) EO-BDD in carbonate medium, DMPO with OH·(●)]
1 | 苏吉虎, 杜江峰. 电子顺磁共振波谱: 原理与应用[M]. 北京: 科学出版社, 2022. |
Su J H, Du J F. Electron Paramagnetic Resonance Spectroscopy[M]. Beijing: Science Press, 2022. | |
2 | 徐元植, 姚加. 电子磁共振波谱学[M]. 北京: 清华大学出版社, 2016. |
Xu Y Z, Yao J. Electron Magnetic Resonance Spectroscopy[M]. Beijing: Tsinghua University Press, 2016. | |
3 | Bakker M G, Fowler B, Bowman M K, et al. Experimental methods in chemical engineering: electron paramagnetic resonance spectroscopy-EPR/ESR[J]. The Canadian Journal of Chemical Engineering, 2020, 98(8): 1668-1681. |
4 | Brückner A. In situ electron paramagnetic resonance: a unique tool for analyzing structure-reactivity relationships in heterogeneous catalysis[J]. Chemical Society Reviews, 2010, 39(12): 4673-4684. |
5 | Van Doorslaer S, Caretti I, Fallis I A, et al. The power of electron paramagnetic resonance to study asymmetric homogeneous catalysts based on transition-metal complexes[J]. Coordination Chemistry Reviews, 2009, 253(15/16): 2116-2130. |
6 | Roessler M M, Salvadori E. Principles and applications of EPR spectroscopy in the chemical sciences[J]. Chemical Society Reviews, 2018, 47(8): 2534-2553. |
7 | 王欣雨, 王永涛, 姚加, 等. 电子顺磁共振波谱在溶液性质研究中的应用[J]. 中国科学: 化学, 2022, 52(5): 647-654. |
Wang X Y, Wang Y T, Yao J, et al. Application of electron paramagnetic resonance in solution property[J]. Scientia Sinica Chimica, 2022, 52(5): 647-654. | |
8 | Esch F, Fabris S, Zhou L, et al. Electron localization determines defect formation on ceria substrates[J]. Science, 2005, 309(5735): 752-755. |
9 | Schaub R, Wahlström E, Rønnau A, et al. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface[J]. Science, 2003, 299(5605): 377-379. |
10 | Ye K H, Li K S, Lu Y R, et al. An overview of advanced methods for the characterization of oxygen vacancies in materials[J]. TrAC-Trends in Analytical Chemistry, 2019, 116: 102-108. |
11 | Gabrielse G, Hanneke D, Kinoshita T, et al. New determination of the fine structure constant from the electron g value and QED[J]. Physical Review Letters, 2006, 97(3): 030802. |
12 | Stefaniuk I. Electron paramagnetic resonance study of impurities and point defects in oxide crystals[J]. Opto-Electronics Review, 2018, 26(2): 81-91. |
13 | Chen J D, Chen C H, Qin M K, et al. Reversible hydrogen spillover in Ru-WO3- x enhances hydrogen evolution activity in neutral pH water splitting[J]. Nature Communications, 2022, 13: 5382. |
14 | Li Z J, Cao A, Zheng Q, et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate[J]. Advanced Materials, 2021, 33(2): e2005113. |
15 | Li H, Li J, Ai Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives[J]. Angewandte Chemie International Edition, 2018, 57(1): 122-138. |
16 | Ren C, Yang R C, Li Y Y, et al. Modulating of facets-dependent oxygen vacancies on ceria and its catalytic oxidation performance[J]. Research on Chemical Intermediates, 2019, 45(5): 3019-3032. |
17 | Lu J L, Gao H J, Shaikhutdinov S, et al. Morphology and defect structure of the CeO2(111) films grown on Ru(0001) as studied by scanning tunneling microscopy[J]. Surface Science, 2006, 600(22): 5004-5010. |
18 | Hu S W, Wang Y, Wang W J, et al. Ag nanoparticles on reducible CeO2(111) thin films: effect of thickness and stoichiometry of ceria[J]. The Journal of Physical Chemistry C, 2015, 119(7): 3579-3588. |
19 | Paparazzo E. XPS quantification of oxygen vacancies in mesoporous and non-mesoporous CeO2: comment on an article by Thillet al., J. Mater. Chem. A, 2020, 8, 24752-24762[J]. Journal of Materials Chemistry A, 2021, 9(41): 23722-23725. |
20 | Qi G D, Xu J, Su J H, et al. Low-temperature reactivity of Zn+ ions confined in ZSM-5 zeolite toward carbon monoxide oxidation: insight from in situ DRIFT and ESR spectroscopy[J]. Journal of the American Chemical Society, 2013, 135(18): 6762-6765. |
21 | Zombeck A, Drago R S, Corden B B, et al. Activation of molecular oxygen. Kinetic studies of the oxidation of hindered phenols with cobalt-dioxygen complexes[J]. Journal of the American Chemical Society, 1981, 103(25): 7580-7585. |
22 | Baumgarten M, Winscom C J, Lubitz W. Probing the surrounding of a cobalt(Ⅱ) porphyrin and its superoxo complex by EPR techniques[J]. Applied Magnetic Resonance, 2001, 20(1): 35-70. |
23 | Manck S, Sarkar B. Use of EPR spectroscopy to unravel reaction mechanisms in (catalytic) bond activation reactions: some selected examples[J]. Topics in Catalysis, 2015, 58(12): 751-758. |
24 | Usharani D, Janardanan D, Li C S, et al. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules[J]. Accounts of Chemical Research, 2013, 46(2): 471-482. |
25 | Würtele C, Gaoutchenova E, Harms K, et al. Crystallographic characterization of a synthetic 1: 1 end-on copper dioxygen adduct complex[J]. Angewandte Chemie International Edition, 2006, 45(23): 3867-3869. |
26 | Yosca T H, Rittle J, Krest C M, et al. Iron(Ⅳ) hydroxide pKa and the role of thiolate ligation in C—H bond activation by cytochrome P450[J]. Science, 2013, 342(6160): 825-829. |
27 | Wang Y T, Guan J, Mei B B, et al. Distribution of spin density on phenoxyl radicals affects the selectivity of aerobic oxygenation of phenols[J]. Inorganic Chemistry, 2020, 59(6): 3562-3569. |
28 | Wang Y T, Wang G Q, Yao J, et al. Restricting effect of solvent aggregates on distribution and mobility of CuCl2 in homogenous catalysis[J]. ACS Catalysis, 2019, 9(7): 6588-6595. |
29 | Lacy D C, Gupta R, Stone K L, et al. Formation, structure, and EPR detection of a high spin Fe(Ⅳ)-oxo species derived from either an Fe(Ⅲ)-oxo or Fe(Ⅲ)-OH complex[J]. Journal of the American Chemical Society, 2010, 132(35): 12188-12190. |
30 | Bonke S A, Risse T, Schnegg A, et al. In situ electron paramagnetic resonance spectroscopy for catalysis[J]. Nature Reviews Methods Primers, 2021, 1: 33. |
31 | Xiao J D, Rabeah J, Yang J, et al. Fast electron transfer and •OH formation: key features for high activity in visible-light-driven ozonation with C3N4 catalysts[J]. ACS Catalysis, 2017, 7(9): 6198-6206. |
32 | Rabeah J, Briois V, Adomeit S, et al. Multivariate analysis of coupled operando EPR/XANES/EXAFS/UV-Vis/ATR-IR spectroscopy: a new dimension for mechanistic studies of catalytic gas-liquid phase reactions[J]. Chemistry, 2020, 26(33): 7395-7404. |
33 | Grauke R, Schepper R, Rabeah J, et al. Impact of Al activators on structure and catalytic performance of Cr catalysts in homogeneous ethylene oligomerization—a multitechnique in situ/operando study[J]. ChemCatChem, 2020, 12(4): 1025-1035. |
34 | Wang J L, Wang S Z. Reactive species in advanced oxidation processes: formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401: 126158. |
35 | Brillas E, Sirés I, Oturan M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631. |
36 | Ganiyu S O, Martínez-Huitle C A, Oturan M A. Electrochemical advanced oxidation processes for wastewater treatment: advances in formation and detection of reactive species and mechanisms[J]. Current Opinion in Electrochemistry, 2021, 27: 100678. |
37 | Fu R, Zhang P S, Jiang Y X, et al. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: advance in mechanism, direct and indirect oxidation detection methods[J]. Chemosphere, 2023, 311(Pt 1): 136993. |
38 | Bianchini R, Calucci L, Lubello C, et al. Intermediate free radicals in the oxidation of wastewaters[J]. Research on Chemical Intermediates, 2002, 28(2): 247-256. |
39 | Kang Y, Yao X Q, Yang Y Q, et al. Metal-free and mild photo-thermal synergism in ionic liquids for lignin Cα-Cβ bond cleavage to provide aldehydes[J]. Green Chemistry, 2021, 23(15): 5524-5534. |
40 | Wacławek S, Lutze H V, Grübel K, et al. Chemistry of persulfates in water and wastewater treatment: a review[J]. Chemical Engineering Journal, 2017, 330: 44-62. |
41 | Duan P J, Liu X N, Liu B H, et al. Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism[J]. Applied Catalysis B: Environmental, 2021, 298: 120532. |
42 | Fan G P, Cang L, Fang G D, et al. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot[J]. Chemosphere, 2014, 117: 410-418. |
43 | Duan X G, Sun H Q, Kang J, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. ACS Catalysis, 2015, 5(8): 4629-4636. |
44 | Anipsitakis G P, Dionysiou D D. Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B: Environmental, 2004, 54(3): 155-163. |
45 | Ayoub G, Ghauch A. Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: application to sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2014, 256: 280-292. |
46 | Suzen S, Gurer-Orhan H, Saso L. Detection of reactive oxygen and nitrogen species by electron paramagnetic resonance (EPR) technique[J]. Molecules, 2017, 22(1): 181. |
47 | Ganiyu S O, Gamal El-Din M. Insight into in situ radical and non-radical oxidative degradation of organic compounds in complex real matrix during electrooxidation with boron doped diamond electrode: a case study of oil sands process water treatment[J]. Applied Catalysis B: Environmental, 2020, 279: 119366. |
48 | Sundaramoorthy S, Singh N, Taube C R, et al. Electro-oxidation of tannery wastewater to achieve zero discharge—a step towards sustainability[J]. Environmental Technology, 2023, 44(20): 2995-3003. |
49 | Du X, Mo Z Y, Li Z Y, et al. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: antibiotics degradation and biofouling[J]. Environment International, 2021, 146: 106291. |
50 | 闫新龙, 黄志刚, 胡清勋, 等. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
Yan X L, Huang Z G, Hu Q X, et al. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon[J]. CIESC Journal, 2023, 74(3): 1102-1112. | |
51 | Chiesa M, Giamello E, Che M. EPR characterization and reactivity of surface-localized inorganic radicals and radical ions[J]. Chemical Reviews, 2010, 110(3): 1320-1347. |
52 | 李雨萧, 王青月, Ho Lim Khak, 等. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570. |
Li Y X, Wang Q Y, Ho L K, et al. Characterization technique for kinetic coefficients of free radical polymerization[J]. CIESC Journal, 2023, 74(2): 559-570. | |
53 | Akdogan Y, Heller J, Zimmermann H, et al. The solvation of nitroxide radicals in ionic liquids studied by high-field EPR spectroscopy[J]. Physical Chemistry Chemical Physics, 2010, 12(28): 7874-7882. |
54 | Mladenova B Y, Kattnig D R, Grampp G. Room-temperature ionic liquids discerned via nitroxyl spin probe dynamics[J]. The Journal of Physical Chemistry. B, 2011, 115(25): 8183-8198. |
55 | McConnell H M. Molecular orbital approximation to electron coupled interaction between nuclear spins[J]. Journal of Chemical Physics, 1956, 24(2): 460-467. |
56 | Zottler E, Gescheidt G. Nitroxides: versatile reporters and reactants[J]. Journal of Chemical Research, 2011, 35(5): 257-267. |
57 | Wang X Y, Chen K X, Yao J, et al. Recent progress in studies on polarity of ionic liquids[J]. Science China Chemistry, 2016, 59(5): 517-525. |
58 | Wang X Y, Dao R N, Yao J, et al. Modification of the Onsager reaction field and its application on spectral parameters[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2017, 18(7): 763-771. |
59 | Wang X Y, Zhang S N, Yao J, et al. The polarity of ionic liquids: relationship between relative permittivity and spectroscopic parameters of probe[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7352-7361. |
60 | Noel M A M, Allendoerfer R D, Osteryoung R A. Solvation in ionic liquids: an EPR study[J]. The Journal of Physical Chemistry, 1992, 96(5): 2391-2394. |
61 | Zhang S N, Wang X Y, Yao J, et al. Electron paramagnetic resonance studies of the chelate-based ionic liquid in different solvents[J]. Green Energy & Environment, 2020, 5(3): 341-346. |
62 | Strehmel V, Laschewsky A, Stoesser R, et al. Mobility of spin probes in ionic liquids[J]. Journal of Physical Organic Chemistry, 2006, 19(5): 318-325. |
63 | Zhang Y, Zhang X, Tang S Y, et al. Relationship between structure and properties of nonstoichiometric protic ionic liquids: n-butylammonium butyrate system[J]. The Journal of Physical Chemistry Letters, 2022, 13(43): 10107-10113. |
64 | Grampp G, Kattnig D, Mladenova B. ESR-spectroscopy in ionic liquids: dynamic linebroadening effects caused by electron-self exchange reactions within the methylviologene redox couple[J]. Molecular and Biomolecular Spectroscopy, 2006, 63(4): 821-825. |
65 | Uddin M A, Yu H J, Wang L, et al. Recent progress in EPR study of spin labeled polymers and spin probed polymer systems[J]. Journal of Polymer Science, 2020, 58(14): 1924-1948. |
66 | Naveed K U R, Wang L, Yu H J, et al. Synthesis of poly(diethylaminoethyl methacrylate-co-2, 2, 6, 6-tetramethyl-4-piperidyl methacrylate)s and their segmental motion study[J]. Colloid and Polymer Science, 2020, 298(11): 1473-1486. |
67 | Naveed K U R, Wang L, Yu H J, et al. Synthesis of spin labeled ethylene glycol based polymers and study of their segmental motion[J]. Journal of Molecular Structure, 2020, 1218: 128528. |
68 | Uddin M A, Yu H J, Wang L, et al. Dynamics in controllable stimuli-responsive self-assembly of polymer vesicles with stable radical functionality[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61693-61706. |
69 | Uddin M A, Yu H J, Wang L, et al. Multi-stimuli-responsive performance and morphological changes of radical-functionalized self-assembled micellar nanoaggregates and their multi-triggered drug release[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126807. |
70 | Uddin M A, Yu H J, Wang L, et al. Stimuli-sensitivity and dynamics in the self-assembly structure of TEMPO-containing nonamphiphilic nanoparticles and their triggering hydrophobic drug release[J]. Materials Today Communications, 2022, 30: 103107. |
71 | Cao Y L, Wang L, Zhou L L, et al. Cs(NH4) x H3- x PMo11VO40 catalyzed selective oxidation of methacrolein to methacrylic acid: effects of NH 4 + on the structure and catalytic activity[J]. Industrial & Engineering Chemistry Research, 2017, 56(3): 653-664. |
72 | Li K, He B, Liu J C, et al. Synergistic interaction of anions and cations in preparation of VPO catalysts promoted by polyoxometalate-ionic liquids[J]. Applied Catalysis A: General, 2019, 582: 117106. |
73 | Zhou L L, Wang L, Zhang S J, et al. Effect of vanadyl species in Keggin-type heteropoly catalysts in selective oxidation of methacrolein to methacrylic acid[J]. Journal of Catalysis, 2015, 329: 431-440. |
74 | Karadeniz B, Žilić D, Huskić I, et al. Controlling the polymorphism and topology transformation in porphyrinic zirconium metal-organic frameworks via mechanochemistry[J]. Journal of the American Chemical Society, 2019, 141(49): 19214-19220. |
75 | Kultaeva A, Böhlmann W, Hartmann M, et al. Selective gas adsorption of alkane/alkene in a single-crystal and powder bimetallic metal-organic framework compound Cu2.97Zn0.03(btc)2 studied by electron paramagnetic resonance[J]. The Journal of Physical Chemistry C, 2019, 123(44): 26877-26887. |
76 | Luo L, Wu Z H, Wu Z X, et al. Role of structure in the ammonia uptake of porous polyionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(13): 4094-4104. |
77 | Luo L, Liu Y B, Wu Z X, et al. Macromolecular-metal complexes induced by Co(Ⅱ) with polymer and flexible ligands for ammonia uptake compared with MOFs[J]. Chemical Engineering Journal, 2022, 448: 137626. |
78 | Zhao Z H, Liu M J, Zhou K, et al. Visible-light-induced phenoxyl radical-based metal-organic framework for selective photooxidation of sulfides[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6982-6989. |
79 | Zhao Z H, Liu M J, Zhou K, et al. Binaphthol derivatives as catalysts for visible light induced aryl halide derivatizations[J]. Catalysis Science & Technology, 2023, 13(14): 4207-4212. |
80 | Zhao Z H, Liu M J, Zhou K, et al. Zr-based metal-organic frameworks with phosphoric acids for the photo-oxidation of sulfides[J]. International Journal of Molecular Sciences, 2022, 23(24): 16121. |
81 | Ray K, Petrenko T, Wieghardt K, et al. Joint spectroscopic and theoretical investigations of transition metal complexes involving non-innocent ligands[J]. Dalton Transactions, 2007(16): 1552-1566. |
[1] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
[2] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[3] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[4] | Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating [J]. CIESC Journal, 2024, 75(1): 292-301. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[11] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||