CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 377-390.DOI: 10.11949/0438-1157.20230685
• Material science and engineering, nanotechnology • Previous Articles
Xiangjun MENG1,2(), Yingxi HUA2, Changjin ZHANG2, Chi ZHANG1, Linrui YANG1, Ruoxi YANG1, Jianyi LIU1, Chunjian XU1()
Received:
2023-07-05
Revised:
2023-09-01
Online:
2024-03-11
Published:
2024-01-25
Contact:
Chunjian XU
孟祥军1,2(), 花莹曦2, 张长金2, 张弛1, 杨林睿1, 杨若昔1, 刘鉴漪1, 许春建1()
通讯作者:
许春建
作者简介:
孟祥军(1979—),男,博士研究生,研究员,mengxiangjun@pericsg.com
基金资助:
CLC Number:
Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas[J]. CIESC Journal, 2024, 75(1): 377-390.
孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390.
Add to citation manager EndNote|Ris|BibTeX
技术指标 | 要求 |
---|---|
化学纯度/%(体积分数) | 99.9999 |
丰度/% | 99.8 |
O2(体积分数) | 0.2×10-6 |
N2(体积分数) | 0.2×10-6 |
CO2(体积分数) | 0.1×10-6 |
CO(体积分数) | 0.1×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 |
水分(体积分数) | 0.2×10-6 |
Table 1 Technical specifications for 6N electronic-grade deuterium gas for advanced process of integrated circuits
技术指标 | 要求 |
---|---|
化学纯度/%(体积分数) | 99.9999 |
丰度/% | 99.8 |
O2(体积分数) | 0.2×10-6 |
N2(体积分数) | 0.2×10-6 |
CO2(体积分数) | 0.1×10-6 |
CO(体积分数) | 0.1×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 |
水分(体积分数) | 0.2×10-6 |
技术指标 | 先进制程集成电路 用6N电子级氘气 技术指标 | 电解产生粗品 氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.69 |
丰度/% | 99.8 | 99.1 |
O2(体积分数) | 0.2×10-6 | 3000 |
N2(体积分数) | 0.2×10-6 | 4.6×10-6 |
CO2(体积分数) | 0.1×10-6 | 3.2×10-6 |
CO(体积分数) | 0.1×10-6 | 2.9×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 2.7×10-6 |
水分(体积分数) | 0.2×10-6 | 16900×10-6 |
Table 2 Technical specifications for D2 prepared by electrolysis of deuterium oxide
技术指标 | 先进制程集成电路 用6N电子级氘气 技术指标 | 电解产生粗品 氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.69 |
丰度/% | 99.8 | 99.1 |
O2(体积分数) | 0.2×10-6 | 3000 |
N2(体积分数) | 0.2×10-6 | 4.6×10-6 |
CO2(体积分数) | 0.1×10-6 | 3.2×10-6 |
CO(体积分数) | 0.1×10-6 | 2.9×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 2.7×10-6 |
水分(体积分数) | 0.2×10-6 | 16900×10-6 |
原料N2含量(体积分数)×106 | 产品N2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
200 | 78.88 | 71.21 | 61.30 | 51.40 | 41.49 | 21.67 |
100 | 39.44 | 35.60 | 30.65 | 25.70 | 20.74 | 10.84 |
50 | 19.72 | 17.80 | 15.33 | 12.85 | 10.37 | 5.42 |
20 | 7.89 | 7.12 | 6.13 | 5.14 | 4.15 | 2.17 |
5 | 1.97 | 1.78 | 1.53 | 1.28 | 1.037 | 0.54 |
Table 3 Simulation results of N2 removal by bubbling stripping under different mass transfer efficiencies
原料N2含量(体积分数)×106 | 产品N2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
200 | 78.88 | 71.21 | 61.30 | 51.40 | 41.49 | 21.67 |
100 | 39.44 | 35.60 | 30.65 | 25.70 | 20.74 | 10.84 |
50 | 19.72 | 17.80 | 15.33 | 12.85 | 10.37 | 5.42 |
20 | 7.89 | 7.12 | 6.13 | 5.14 | 4.15 | 2.17 |
5 | 1.97 | 1.78 | 1.53 | 1.28 | 1.037 | 0.54 |
原料CO2含量(体积分数)×106 | 产品CO2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
100 | 44.36 | 39.73 | 35.09 | 30.46 | 25.82 | 16.55 |
50 | 22.18 | 19.87 | 17.55 | 15.23 | 12.91 | 8.27 |
20 | 8.87 | 7.95 | 7.02 | 6.09 | 5.17 | 3.31 |
5 | 2.22 | 1.99 | 1.76 | 1.52 | 1.29 | 0.83 |
Table 4 Simulation results of CO2 removal by bubbling stripping under different mass transfer efficiencies
原料CO2含量(体积分数)×106 | 产品CO2含量(体积分数)×106 | |||||
---|---|---|---|---|---|---|
60% | 65% | 70% | 75% | 80% | 90% | |
100 | 44.36 | 39.73 | 35.09 | 30.46 | 25.82 | 16.55 |
50 | 22.18 | 19.87 | 17.55 | 15.23 | 12.91 | 8.27 |
20 | 8.87 | 7.95 | 7.02 | 6.09 | 5.17 | 3.31 |
5 | 2.22 | 1.99 | 1.76 | 1.52 | 1.29 | 0.83 |
i | j | bij | bji |
---|---|---|---|
O2 | CO | 16.9052 | -17.2747 |
O2 | CO2 | 76.4046 | -182.302 |
O2 | D2O | 60.9711 | -130.462 |
O2 | CH4 | 54.3353 | -47.5285 |
O2 | N2 | 3.24432 | -2.38266 |
CO | CO2 | 85.053 | -190.634 |
CO | D2O | 70.63 | -137.331 |
CO | CH4 | 68.8156 | -61.7226 |
CO | N2 | 21.9528 | -20.733 |
CO2 | D2O | -289.273 | -209.6 |
CO2 | CH4 | -44.0607 | -14.5141 |
CO2 | N2 | -130.213 | 46.8441 |
D2O | CH4 | -2018.99 | -538.555 |
D2O | N2 | -109.55 | 4.10097 |
CH4 | N2 | -42.726 | 45.0976 |
Table 5 Binary interaction parameters of Wilson equation
i | j | bij | bji |
---|---|---|---|
O2 | CO | 16.9052 | -17.2747 |
O2 | CO2 | 76.4046 | -182.302 |
O2 | D2O | 60.9711 | -130.462 |
O2 | CH4 | 54.3353 | -47.5285 |
O2 | N2 | 3.24432 | -2.38266 |
CO | CO2 | 85.053 | -190.634 |
CO | D2O | 70.63 | -137.331 |
CO | CH4 | 68.8156 | -61.7226 |
CO | N2 | 21.9528 | -20.733 |
CO2 | D2O | -289.273 | -209.6 |
CO2 | CH4 | -44.0607 | -14.5141 |
CO2 | N2 | -130.213 | 46.8441 |
D2O | CH4 | -2018.99 | -538.555 |
D2O | N2 | -109.55 | 4.10097 |
CH4 | N2 | -42.726 | 45.0976 |
原料N2含量 (体积分数)×106 | 产品N2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
200 | 1.86 | 0.0504 | 9.35×10-4 |
100 | 0.93 | 0.025 | 4.67×10-4 |
50 | 0.47 | 0.013 | 2.34×10-4 |
20 | 0.19 | 5.04×10-3 | 9.35×10-5 |
5 | 0.047 | 1.26×10-9 | 2.34×10-5 |
Table 6 Simulation results of N2 removal by a stripping column
原料N2含量 (体积分数)×106 | 产品N2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
200 | 1.86 | 0.0504 | 9.35×10-4 |
100 | 0.93 | 0.025 | 4.67×10-4 |
50 | 0.47 | 0.013 | 2.34×10-4 |
20 | 0.19 | 5.04×10-3 | 9.35×10-5 |
5 | 0.047 | 1.26×10-9 | 2.34×10-5 |
原料CO2含量 (体积分数)×106 | 产品CO2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
100 | 7.27 | 0.84 | 0.084 |
50 | 3.64 | 0.42 | 0.042 |
20 | 1.46 | 0.17 | 0.017 |
5 | 0.37 | 0.042 | 4.22×10-9 |
Table 7 Simulation results of CO2 removal by a stripping column
原料CO2含量 (体积分数)×106 | 产品CO2含量(体积分数)×106 | ||
---|---|---|---|
1块 | 2块 | 3块 | |
100 | 7.27 | 0.84 | 0.084 |
50 | 3.64 | 0.42 | 0.042 |
20 | 1.46 | 0.17 | 0.017 |
5 | 0.37 | 0.042 | 4.22×10-9 |
序号 | 静态饱和吸附量/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
1 | 25.53 | 25.26 | 24.12 | 31.20 |
2 | 25.47 | 25.34 | 24.15 | 30.92 |
3 | 25.32 | 25.42 | 23.96 | 31.12 |
平均值 | 25.44 | 25.34 | 24.08 | 31.08 |
Table 8 Static saturation adsorption capacities of different molecular sieves
序号 | 静态饱和吸附量/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
1 | 25.53 | 25.26 | 24.12 | 31.20 |
2 | 25.47 | 25.34 | 24.15 | 30.92 |
3 | 25.32 | 25.42 | 23.96 | 31.12 |
平均值 | 25.44 | 25.34 | 24.08 | 31.08 |
分子筛种类 | 动态吸附量/% |
---|---|
3A | 8.21 |
4A | 7.30 |
5A | 6.24 |
13X | 11.02 |
Table 9 Dynamic saturation adsorption capacities of different molecular sieves
分子筛种类 | 动态吸附量/% |
---|---|
3A | 8.21 |
4A | 7.30 |
5A | 6.24 |
13X | 11.02 |
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 94.39 | 93.24 | 93.10 | 92.52 |
200 | 97.85 | 96.61 | 96.50 | 95.83 |
250 | 98.59 | 97.87 | 97.50 | 96.50 |
280 | 98.63 | 98.10 | 97.53 | 96.58 |
300 | 98.69 | 98.16 | 97.55 | 96.60 |
Table 10 Desorption rates at different regeneration temperatures after purge regeneration
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 94.39 | 93.24 | 93.10 | 92.52 |
200 | 97.85 | 96.61 | 96.50 | 95.83 |
250 | 98.59 | 97.87 | 97.50 | 96.50 |
280 | 98.63 | 98.10 | 97.53 | 96.58 |
300 | 98.69 | 98.16 | 97.55 | 96.60 |
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 90.18 | 91.05 | 92.56 | 94.52 |
5 | 98.56 | 97.82 | 97.48 | 96.43 |
6 | 98.61 | 97.85 | 97.52 | 96.54 |
7 | 98.63 | 97.80 | 97.56 | 96.58 |
8 | 98.62 | 97.84 | 97.55 | 96.57 |
9 | 98.63 | 97.84 | 97.57 | 96.56 |
Table 11 Desorption rates at different regeneration times after purge regeneration
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 90.18 | 91.05 | 92.56 | 94.52 |
5 | 98.56 | 97.82 | 97.48 | 96.43 |
6 | 98.61 | 97.85 | 97.52 | 96.54 |
7 | 98.63 | 97.80 | 97.56 | 96.58 |
8 | 98.62 | 97.84 | 97.55 | 96.57 |
9 | 98.63 | 97.84 | 97.57 | 96.56 |
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 96.28 | 96.24 | 96.10 | 96.52 |
200 | 98.36 | 98.61 | 98.50 | 98.83 |
250 | 99.65 | 99.52 | 99.50 | 99.57 |
280 | 99.63 | 99.43 | 99.53 | 99.58 |
300 | 99.65 | 99.45 | 99.55 | 99.60 |
Table 12 Desorption rates at different temperatures after vacuum regeneration
再生温度/℃ | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
150 | 96.28 | 96.24 | 96.10 | 96.52 |
200 | 98.36 | 98.61 | 98.50 | 98.83 |
250 | 99.65 | 99.52 | 99.50 | 99.57 |
280 | 99.63 | 99.43 | 99.53 | 99.58 |
300 | 99.65 | 99.45 | 99.55 | 99.60 |
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 87.63 | 85.87 | 87.13 | 88.29 |
5 | 95.32 | 94.73 | 96.26 | 97.45 |
6 | 98.97 | 99.10 | 98.95 | 99.03 |
7 | 99.62 | 99.48 | 99.52 | 99.58 |
8 | 99.62 | 99.45 | 99.55 | 99.60 |
9 | 99.64 | 99.46 | 99.53 | 99.59 |
Table 13 Desorption rates at different regeneration times during vacuum regeneration
再生时间/h | ΔQ/% | |||
---|---|---|---|---|
3A | 4A | 5A | 13X | |
4 | 87.63 | 85.87 | 87.13 | 88.29 |
5 | 95.32 | 94.73 | 96.26 | 97.45 |
6 | 98.97 | 99.10 | 98.95 | 99.03 |
7 | 99.62 | 99.48 | 99.52 | 99.58 |
8 | 99.62 | 99.45 | 99.55 | 99.60 |
9 | 99.64 | 99.46 | 99.53 | 99.59 |
分子筛种类 | 回收率/% |
---|---|
3A | 99.9847 |
4A | 99.9828 |
5A | 99.9804 |
13X | 99.9885 |
Table 14 The recovery rates of D2 under respective optimal conditions for different molecular sieves
分子筛种类 | 回收率/% |
---|---|
3A | 99.9847 |
4A | 99.9828 |
5A | 99.9804 |
13X | 99.9885 |
技术指标 | 要求 | 本文工艺方案所得氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.9999 |
丰度/% | 99.8 | 99.8 |
O2(体积分数) | 0.2×10-6 | 0.03×10-6 |
N2(体积分数) | 0.2×10-6 | ≤0.01×10-6 |
CO2(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
CO(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 0.02×10-6 |
水分(体积分数) | 0.2×10-6 | 0.16×10-6 |
Table 15 Technical specifications for 6N deuterium gas prepared by the as-proposed process
技术指标 | 要求 | 本文工艺方案所得氘气 |
---|---|---|
化学纯度/%(体积分数) | 99.9999 | 99.9999 |
丰度/% | 99.8 | 99.8 |
O2(体积分数) | 0.2×10-6 | 0.03×10-6 |
N2(体积分数) | 0.2×10-6 | ≤0.01×10-6 |
CO2(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
CO(体积分数) | 0.1×10-6 | ≤0.01×10-6 |
总碳氢化合物(体积分数) | 0.2×10-6 | 0.02×10-6 |
水分(体积分数) | 0.2×10-6 | 0.16×10-6 |
1 | Ramachandran P V, Reddy G V. Preparative-scale one-pot syntheses of hexafluoro-1, 3-butadiene[J]. Journal of Fluorine Chemistry, 2008, 129(5): 443-446. |
2 | Nicoletti A, Srinivasan P, Riva M, et al. C4F6-1,3 hexafluorobutadiene—a new etching gas: studies on material compatibility, behavior in inductively coupled plasma and etch processes performance[C]//16th International Symposium on Plasma Chemistry. Taormina, Italy: Wiley, 2003. |
3 | Choi R, Onishi K, Kang C S, et al. Effects of deuterium anneal on MOSFETs with HfO2 gate dielectrics[J]. IEEE Electron Device Letters, 2003, 24(3): 144-146. |
4 | Iwai Y, Yamanishi T, O'Hira S, et al. H-D-T cryogenic distillation experiments at TPL/JAERI in support of ITER[J]. Fusion Engineering and Design, 2002, 61/62: 553-560. |
5 | Arrathoon R. Process for the production of high purity deuterium: US4054496[P]. 1977-10-18. |
6 | 罗祎青, 袁希钢, 刘春江. 氢同位素的低温精馏分离及模拟技术[J]. 化学工程, 2004, 32(5): 10-14, 24. |
Luo Y Q, Yuan X G, Liu C J. Hydrogen isotope separation and simulation technology with cryogenic distillation system[J]. Chemical Engineering (China), 2004, 32(5): 10-14, 24. | |
7 | Bainbridge N, Bell A C, Brennan P D, et al. Operational experience with the JET AGHS cryodistillation system during and after DTE1[J]. Fusion Engineering and Design, 1999, 47(2/3): 321-332. |
8 | Ivanchuk O M, Goryanina V G, Rozenkevich M B. Isotopic effects of hydrogen during the decomposition of water in electrolysis with a solid polymer electrolyte[J]. Atomic Energy, 2000, 89(3): 745-749. |
9 | Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385. |
10 | Liu P, Chen B, Liang C, et al. Tip-enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions[J]. Advanced Materials, 2021, 33(9): 2007377. |
11 | Kang W, Wei R, Yin H, et al. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation[J]. Journal of the American Chemical Society, 2023, 145(6): 3470-3477. |
12 | Seitz L C, Dickens C F, Nishio K, et al. A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014. |
13 | Saitou T C, Sugiyama K. Hydrogen purification with metal hydride sintered pellets using pressure swing adsorption method[J]. Journal of Alloys and Compounds, 1995, 231(1/2): 865-870. |
14 | Lin Y W, Cheng T W, Lo K W, et al. Synthesis and characterization of a mesoporous Al-MCM-41 molecular sieve material and its moisture regulation performance in water molecule adsorption/desorption[J]. Microporous and Mesoporous Materials, 2021, 310: 110643. |
15 | 陈诵英, 彭少逸, 杨学仁. 钯/碳纤维脱氧催化剂高效性原因的初步考察[J]. 化工学报, 1988, 39(6): 723-729. |
Chen S Y, Peng S Y, Yang X R. Causes for the high performance of Pd-carbon fiber deoxygenation catalyst[J]. Journal of Chemical Industry and Engineering (China), 1988, 39(6): 723-729. | |
16 | Kim J, Jung T, Cho D W, et al. Comprehensive evaluation of 3A, 4A, 5A, and 13X zeolites for selective 1-octene adsorption over n-octane[J]. Journal of Industrial and Engineering Chemistry, 2022, 110: 274-285. |
17 | Li J T, Zheng K T, Zhang C, et al. Cl modulation on boron-rich carbon embedded with NiFe alloys for efficient oxygen evolution reaction[J]. Chemical Engineering Journal, 2023, 462: 142267. |
18 | Zhao M, Li H L, Yuan W Y, et al. Tannic acid-mediated in situ controlled assembly of NiFe alloy nanoparticles on pristine graphene as a superior oxygen evolution catalyst[J]. ACS Applied Energy Materials, 2020, 3(4): 3966-3977. |
19 | Du X, Huang J, Zhang J, et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting[J]. Angewandte Chemie International Edition, 2019, 58(14): 4484-4502. |
20 | Batchelor-McAuley C. Defining the onset potential[J]. Current Opinion in Electrochemistry, 2023, 37: 101176. |
21 | She S X, Zhu Y L, Chen Y B, et al. Perovskites: realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites[J]. Advanced Energy Materials, 2019, 9(20): 1900429. |
22 | Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
23 | Eshghi A, Kheirmand M. Graphene/Ni-Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15064-15072. |
24 | Jakub W, Jakub K, Emerson C, et al. Spectacular oxygen evolution reaction enhancement through laser processing of the nickel-decorated titania nanotubes[J]. Advanced Materials Interfaces, 2021, 8(18): 2001420. |
25 | Park C E, Senthil R A, Jeong G H, et al. Architecting the high-entropy oxides on 2D MXene nanosheets by rapid microwave-heating strategy with robust photoelectrochemical oxygen evolution performance[J]. Small, 2023, 19(27): e2207820. |
26 | Bhattarai R M, Chhetri K, Le N, et al. Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion[J]. Carbon Energy, DOI: 10.1002/cey2.392 . |
27 | Ren H J, Pan Y, Sorrell C C, et al. Assessment of electrocatalytic activity through the lens of three surface area normalization techniques[J]. Journal of Materials Chemistry A, 2020, 8(6): 3154-3159. |
28 | Kim Y J, Lim A, Kim J M, et al. Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts[J]. Nature Communications, 2020, 11: 4921. |
29 | Anantharaj S, Ede S R, Karthick K, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment[J]. Energy & Environmental Science, 2018, 11(4): 744-771. |
30 | Atanu R, Apurba R, Samik S, et al. Influence of electrochemical active surface area on the oxygen evolution reaction and energy storage performance of MnO2-multiwalled carbon nanotube composite[J]. International Journal of Energy Research, 2021, 45(11): 16908-16921. |
31 | Gabruś E, Nastaj J, Tabero P, et al. Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: aliphatic alcohols dewatering-water desorption[J]. Chemical Engineering Journal, 2015, 259: 232-242. |
32 | Ribeiro R P P L, Grande C A, Rodrigues A E. Adsorption of water vapor on carbon molecular sieve: thermal and electrothermal regeneration study[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2144-2156. |
[1] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[2] | Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM [J]. CIESC Journal, 2024, 75(1): 354-365. |
[3] | Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime [J]. CIESC Journal, 2024, 75(1): 302-311. |
[4] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[5] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[6] | Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation [J]. CIESC Journal, 2024, 75(1): 138-158. |
[7] | Liuyang YU, Shubo LIU, Shengzhe JIA, Hang MA, Banglong WAN, Qiwen SU, Jingkang WANG, Weiwei TANG, Yujuan HE, Junbo GONG. Current status and research progress of purification technology of electronic grade phosphoric acid [J]. CIESC Journal, 2024, 75(1): 1-19. |
[8] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[9] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[10] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[11] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[12] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[13] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[14] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[15] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||