化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3385-3395.doi: 10.11949/0438-1157.20190231

• 流体力学与传递现象 • 上一篇    下一篇

π型向心径向流吸附器变质量流动特性研究

王浩宇1(),刘应书2,张传钊1,杨雄2,陈江伟2   

  1. 1. 北京联合大学生物化学工程学院,北京100023
    2. 北京科技大学能源与环境工程学院,北京100083
  • 收稿日期:2019-03-12 修回日期:2019-06-25 出版日期:2019-09-05 发布日期:2019-09-05
  • 通讯作者: 王浩宇 E-mail:jdthaoyu@buu.edu.cn
  • 作者简介:王浩宇(1981—),女,博士,讲师,jdthaoyu@buu.edu.cn
  • 基金资助:
    北京市自然科学基金项目(8182019);北京市教育委员会科技计划一般项目(KM201711417014);国家自然科学基金项目(51578065)

Study on variable mass flow laws in π-shaped centripetal radial flow adsorber

Haoyu WANG1(),Yingshu LIU2,Chuanzhao ZHANG1,Xiong YANG2,Jiangwei CHEN2   

  1. 1. School of Biochemical Engineering, Beijing Union University, Beijing 100023, China
    2. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2019-03-12 Revised:2019-06-25 Published:2019-09-05 Online:2019-09-05
  • Contact: Haoyu WANG E-mail:jdthaoyu@buu.edu.cn

摘要:

对径向流吸附器内变压吸附(PSA)制氧的变质量流动规律进行研究,有助于准确掌握吸附过程及床层内的变量因素对制氧性能的影响。对π型向心径向流吸附器建立气固耦合的两相吸附模型,并对其PSA制氧过程进行了数值模拟研究,得到了床层内氧气浓度分布、温度分布以及产品气浓度的变化规律。结果表明:首次循环结束时床层内氧气最高摩尔分数可达66.02%,回收率29.2%。非稳定循环期间,氧气摩尔分数从66.02%升高至 97.5%,回收率从29.2%提高至38.5%。循环达到稳定后,床层内氧气摩尔分数最高可达98.6%,回收率38.9%左右,且达到稳定状态后床层内气固两相温差减小,逐渐达到热平衡。获得了吸附器内部气体与吸附剂两相间的传质、传热过程,为π型向心径向流吸附器用于PSA制氧提供技术支持。

关键词: 径向流, 吸附, π型向心, 两相流, 数值模拟

Abstract:

Studying the variable mass flow law of pressure swing adsorption (PSA) in the radial flow adsorber can help to accurately grasp the influence of the adsorption process and the variable factors in the bed on the oxygen production performance. An air-solid two-phase pressure swing adsorption model is established for the π-shaped centripetal radial flow adsorber, axial oxygen purity profiles, temperature wave and oxygen concentration for product gas are comparatively studied by using this model. The results show that the oxygen purity of 66.02% and the recovery of the production of 29.2% can be obtained in the outlet after the first PSA cycle. The oxygen purity increases from 66.02% to 97.5% and the recovery of the production increases from 29.2% to 38.5% during the unsteady state. The product oxygen purity and recovery are achieved to be 98.6% and 38.9% at the end of each steps in steady state, and finally the temperature difference of air-solid two-phase gradually decreases and reaches thermal balance. The mass and heat transfer between the air and the adsorbent are obtained, which provides reference for π-shaped centripetal in the PSA for oxygen production.

Key words: radial flow, adsorption, π-shaped centripetal, two phase flow, numerical simulation

中图分类号: 

  • TG 142.71

图1

π型向心径向流吸附器的结构及物理模型"

表1

π型向心径向流吸附器的主要结构参数"

结构参数 数值 结构参数 数值
吸附器半径/mm 110 中心流道宽度/mm 12
吸附器长度/mm 210 吸附剂装填层厚度/mm 62
进气口半径/mm 12 外流道宽度/mm 30
进气口长度/mm 40 气流分布孔厚度/mm 3
出气口半径/mm 12 中心流道开孔半径/mm 2
出气口长度/mm 60 外流道开孔半径/mm 4
吸附剂装填高度/mm 20 吸附剂颗粒直径/mm 3
中心流道气流分布孔开孔率/% 17 外流道气流分布孔开孔率/% 27

表2

初始条件"

参数 数值

气体组分

压力/ Pa

21%O2,79%N2

101325

气相温度/ K 293
固相温度/ K 293
气相氧气质量分数 0.233
单位质量吸附剂氧气吸附量/( mol·kg-1) 0.0262832
单位质量吸附剂氮气吸附量/( mol·kg-1) 0.6328067

表3

模型具体参数"

参数 数值
床层孔隙率 0.4
颗粒密度 ρ p /(kg·m3) 1035
直径 d p /mm 1.6
比热容/ (J·kg-1·K-1) 1100

表4

循环顺序"

项目 升压 吸附 降压 反吹

循环过程

示意图

时间/s 7 5 3 5

表5

吸附器1边界条件设置"

入口 出口 床壁 轴线
质量入口q in(p) 对称轴
质量入口q in(p) 压力出口(大气压) 对称轴
压力出口(大气压) 对称轴
压力出口(大气压) 质量入口 对称轴

表6

吸附等温线参数"

吸附质 k 1/(mol·kg-1·Pa-1) k 2/K k 3/Pa-1 k 4/K ΔH/(kJ·mol-1)
O2 7.87×10-9 1541.211 6.79×10-10 1968.24 12
N2 9.86×10-9 2010.908 1.67×10-9 2250 18

图2

单组分N2和O2的吸附平衡曲线模拟结果与实验对比"

图3

首次循环结束时刻π型向心径向流吸附器1中各阶段结束时刻氧气摩尔分数云图变化分布"

图4

首次循环结束时刻π型吸附器1中各阶段结束时刻氧气摩尔分数在L位置沿径向变化规律"

图5

首次循环四步结束时刻π型吸附器1中各阶段结束时刻气固两相温度在L位置沿径向变化规律"

图6

吸附器1出口处的氧气摩尔分数随循环周期的变化"

图7

氧气回收率随循环次数的变化"

图8

循环稳定后四步结束时刻π型向心径向流吸附器1中各阶段结束时刻氧气摩尔分数云图"

图9

循环稳定状态四步结束时刻床1中各阶段结束时刻氧气摩尔分数沿径向变化"

图10

循环稳定四步结束时刻床1中各阶段结束时刻气固两相温度在腰线位置沿径向变化规律"

1 王啸 . 非等温变压吸附空分制氧过程的计算和优化[D]. 南京: 南京工业大学, 2003.
Wang X . Computation and optimization of non-isothermal pressure swing adsorption process of air separation for oxygen[D]. Nanjing: Nanjing University of Technology, 2003.
2 侯梅芳, 崔杏雨, 李瑞丰 . 沸石分子筛在气体吸附分离方面的应用研究[J]. 太原理工大学学报, 2001, 32(2): 135-139.
Hou M F , Cui X Y , Li R F . Application of zeolite molecular sieves adsorbents in gas separation [J]. Journal of Taiyuan University of Technology, 2001, 32(2): 135-139.
3 李杰, 周理 . 变压吸附空分制氧的技术进展[J]. 化学工业与工程, 2004, 21(3): 201-205.
Li J , Zhou L . Progress in oxygen separation from air by pressure swing adsorption[J]. Chemical Industry and Engineering, 2004, 21(3): 201-205.
4 Dai Z S , Yu M , Rui D Z , et al . Investigation on a vertical radial flow adsorber designed by a novel parallel connection method[J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 484-493.
5 Tian Q Q , He G G , Wang Z P , et al . A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7502-7515.
6 Zheng T , Du Z L , Cao H Z , et al . Development of a novel mobile industrial-scale fluidized adsorption process for emergency treatment of water polluted by aniline: CFD simulation and experiments[J]. Advanced Powder Technology, 2016, 27(4): 1576-1587.
7 Li R J , Zhu Z B . Investigations on hydrodynamics of multilayer Π-type radial flow reactors[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(4): 517-527.
8 Chiang A S T , Hong M C . Radial flow rapid pressure swing adsorption[J]. Adsorption, 1995, 1(2): 153-164.
9 陆军亮, 张学军, 邱利民, 等 . 立式径向流吸附器中流体均布的理论分析[J]. 化工学报, 2012, 63(S2): 21-25.
Lu J L , Zhang X J , Qiu L M , et al . Theoretical analysis of uniform flow distribution in vertical radical adsorption bed[J]. CIESC Journal, 2012, 63(S2): 21-25.
10 陈瑶, 张学军, 陆军亮, 等 . 径向流吸附器流体流动特性及其结构参数优化[J]. 化工学报, 2014, 65(9): 3395-3402.
Chen Y , Zhang X J , Lu J L , et al . Flow characteristics of radical flow adsorber and its structure parameters optimization[J]. CIESC Journal, 2014, 65(9): 3395-3402.
11 Kareeri A A , Zughbi H D , Al-Ali H H . Simulation of flow distribution in radial flow reactors[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2862-2874.
12 芮道哲, 张学军, 陈瑶, 等 . 立式分层并联径向流吸附器流场数值模拟[J]. 化工学报, 2015, 66(11): 4485-4492.
Rui D Z , Zhang X J , Chen Y , et al . Simulation of flow field in vertical radical flow adsorber with parallel connection device[J]. CIESC Journal, 2015, 66(11): 4485-4492.
13 Bolton G T , Hooper C W , Mann R , et al . Flow distribution and velocity measurement in a radial flow fixed bed reactor using electrical resistance tomography[J]. Chemical Engineering Science, 2004, 59(10): 1989-1997.
14 王恒, 顾雄毅 . 丁烯氧化脱氢径向床反应器流体力学特性研究[J]. 化学工程, 2018, 46(3): 36-40.
Wang H , Gu X Y . Hydrodynamic characteristics of radial flow reactor for oxidative dehydrogenation of butane to butadiene[J]. Chemical Engineering(China), 2018, 46(3): 36-40.
15 唐忠利, 徐明杨, 张俊 . 径向流空气纯化器内流场的模拟与分析[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(3): 305-313.
Tang Z L , Xu M Y , Zhang J . Simulation and analysis on gas flow distribution in radial flow air adsorber[J]. Journal of Tianjin University (Science and Technology), 2016, 49(3): 305-313.
16 郑新港, 刘应书, 杨俊峰, 等 . 基于计算流体力学的吸附过程模拟研究[J]. 北京工业大学学报, 2012, 38(1): 145-150.
Zheng X G , Liu Y S , Yang J F , et al . Simulation of gas adsorption based on computational fluid dynamics[J]. Journal of Beijing University of Technology, 2012, 38(1): 145-150.
17 马素娟, 蓝兴英, 高金森, 等 . 径向流固定床反应器内流动规律的数值模拟[J]. 石油化工高等学校学报, 2007, 20(4): 68-75.
Ma S J , Lan X Y , Gao J S , et al . Numerical simulation on flow performance in radical flow fixed bed reactors[J]. Journal of Petrochemical Universities, 2007, 20(4): 68-75.
18 田津津, 张玉文, 王锐 . 变压吸附系统气流分布器结构的数值模拟计算及分析[J]. 低温工程, 2005, 146(4): 45-48.
Tian J J , Zhang Y W , Wang R . Numerical simulation of flow distributor of pressure swing adsorption system[J]. Cryogenics, 2005, 146(4): 45-48.
19 Ewing R E , Wang J P , Weekes S L . On the simulation of multicomponent gas flow in porous media[J]. Applied Numerical Mathematics, 1999, 31(4): 405-410.
20 Zheng X G , Liu Y S , Liu W H . Two-dimensional modeling of the transport phenomena in the adsorber during pressure swing adsorption process[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11814-11824.
21 Sadeghzadeh A J , Pakseresht S , Mahdyarfar M , et al . Predictive dynamic model of air separation by pressure swing adsorption[J]. Chemical Engineering & Technology, 2006, 29(1): 58-63.
22 Celik C E , Smolarek J . Radial bed flow distributor for radial pressure adsorber vessel: US 7128775B2[P]. 2006-10-31.
23 王浩宇, 刘应书, 孟宇 . 径向流吸附器布气系统结构对布气效果的影响[J]. 工程科学学报, 2015, 37(1): 91-96.
Wang H Y , Liu Y S , Meng Y . Effect of the gas distribution system structure of a radial flow adsorber on gas distribution[J]. Chinese Journal of Engineering, 2015, 37(1): 91-96.
24 Liu Y S , Zheng X G , Dai R F . Numerical study of flow maldistribution and depressurization strategies in a small-scale axial absorber[J]. Adsorption, 2014, 20(5/6): 757-768.
25 Sun L M , Amar N B , Meunier F . Numerical study on coupled heat and mass transfers in an adsorber with external fluid heating[J]. Heat Recovery Systems and CHP, 1995, 15(1): 19-29.
26 Zhu X Q , Liu Y S , Yang X , et al . Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen[J]. Adsorption, 2017, 23(1): 175-184.
27 Li Z Y , Liu Y S , Wang H Y , et al . A numerical modelling study of SO2 adsorption on activated carbons with new rate equations[J]. Chemical Engineering Journal, 2018, 353(1): 858-866.
28 Li G , Xiao P , Zhang J , et al . The role of water on postcombustion CO2 capture by vacuum swing adsorption: bed layering and purge to feed ratio[J]. AIChE Journal, 2014, 60(2): 673-689.
29 Yang X , Epiepang F E , Li J B , et al . Sr-LSX zeolite for air separation[J]. Chemical Engineering Journal, 2019, 362(1): 482-486.
30 Epiepang F E , Yang X , Li J B , et al . Mixed-cation LiCa-LSX zeolite with minimum lithium for air separation[J]. AIChE Journal, 2018, 64(2): 406-415.
31 Sorial G A , Granville W H , Daly W O . Adsorption equilibria for oxygen and nitrogen gas mixtures on 5A molecular sieves[J]. Chemical Engineering Science, 1983, 38(9): 1517-1523.
[1] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[2] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[3] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[7] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[8] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[9] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[10] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[11] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[12] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[13] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[14] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[15] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬忠礼, 彭书, 谭立村. 陶瓷过滤器脉冲反吹系统的流场的数值模拟[J]. CIESC Journal, 2003, 11(6): 626 -632 .
[2] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[3] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[4] 朱虎刚, 田宜灵, 陈丽, 秦颖, 冯季军. 超临界二氧化碳-乙醇二元体系的高压相平衡[J]. CIESC Journal, 2001, 9(3): 322 -325 .
[5] K.Smolders, D.Geldart, J.Baeyens. 流化床中旋风下料管的物理模型[J]. CIESC Journal, 2001, 9(4): 337 -347 .
[6] 陈丰秋, 吴素芳, 陈纪忠, 戎顺熙. 难降解芳烃化合物在超临界水中氧化的COD去除率的研究[J]. CIESC Journal, 2001, 9(2): 137 -140 .
[7] 施云海, 李文清, 涂晋林. Vapor-Liquid Equilibria for Dimethyl Carbonate-n-Butyl Acetate Binary System at 101.325kPa[J]. CIESC Journal, 1999, 7(1): 83 -85 .
[8] M.Kamel,J.I.Lombrana,C.deElvira,R.Rodríguez. 微波及辐射真空干燥过程中的干燥动力学及能量消耗[J]. CIESC Journal, 2004, 12(6): 809 -813 .
[9] 昝佳, 朱德权, 谭丰苹, 蒋国强, 林莹, 丁富新. 氟脲嘧啶微粒-壳聚糖微敏性水凝胶复合释药系统的制备
[J]. CIESC Journal, 2006, 14(2): 235 -241 .
[10] AhmetSari,KamilKaygusuz. 应用于低温加热的肉豆蔻酸和硬脂酸共熔混合物的储热特性[J]. CIESC Journal, 2006, 14(2): 270 -275 .