化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3353-3362.doi: 10.11949/0438-1157.20190350

• 流体力学与传递现象 • 上一篇    下一篇

螺旋扁管折流杆换热器壳侧性能多目标优化研究

王斯民1(),孙利娟1,宋晨1,张早校1,文键2()   

  1. 1. 西安交通大学化学工程与技术学院,陕西 西安 710049
    2. 西安交通大学能源与动力工程学院,陕西 西安 710049
  • 收稿日期:2019-04-03 修回日期:2019-06-14 出版日期:2019-09-05 发布日期:2019-09-05
  • 通讯作者: 文键 E-mail:smwang@mail.xjtu.edu.cn;jianwen@mail.xjtu.edu.cn
  • 作者简介:王斯民(1977—),男,博士,副教授,smwang@mail.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51676146)

Multi-objective optimization on shell-side performance of rod-baffle heat exchangers with twisted oval tubes

Simin WANG1(),Lijuan SUN1,Chen SONG1,Zaoxiao ZHANG1,Jian WEN2()   

  1. 1. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-04-03 Revised:2019-06-14 Published:2019-09-05 Online:2019-09-05
  • Contact: Jian WEN E-mail:smwang@mail.xjtu.edu.cn;jianwen@mail.xjtu.edu.cn

摘要:

基于遗传聚集响应面模型和多目标遗传算法,研究了以螺旋扁管为换热管的折流杆换热器结构参数、入口速度对壳侧流动和换热性能的影响,并对螺旋扁管折流杆换热器的性能进行了优化分析。结果表明:传热系数随螺距的增大先减小9.38%,后维持不变;在低入口速度条件下,随长短轴之比的增大而增大,在高入口速度条件下,存在先减小后增大的趋势。压降随螺距的增大基本不变;随长短轴之比的增大减小了36.67%。由敏感性分析可知传热系数和压降对入口速度的变化最敏感,截面椭圆长短轴之比次之,对螺距最不敏感。优化后的螺旋扁管折流杆换热器结构比原结构单位压降下的传热系数平均提高了26.42%。

关键词: 折流杆换热器, 螺旋扁管, 数值模拟, 遗传聚集响应面模型, 多目标遗传算法, 优化, 湍流

Abstract:

Based on genetic aggregation response surface models and multi-objective genetic algorithms, the effects of key structural parameters and inlet velocities on the shell-side flow and heat transfer of rod-baffle heat exchangers (RBHXs) with twisted oval tubes were investigated. The performance of twisted-oval-tube RBHXs was optimized. The results show that the heat transfer coefficient h decreases by 9.38% firstly and then remains constant with the increase of the pitch and it increases with the ratio of long axis to short axis under lower inlet velocities and decreases firstly and then increases when inlet velocities are higher. When the inlet velocity is 0.1 m/s, the heat transfer coefficient increases by 45.92% with the ratio of long axis to short axis. When the inlet velocity is 0.5 m/s, the heat transfer coefficient decreases by 12.96% firstly and increases by 7.74% then. The pressure drop Δp is constant with the increase of the pitch; the increase with the ratio of the long and short axes is reduced by 36.67%. The sensitivity analysis shows that inlet velocities influence the heat transfer coefficient and pressure drop more than structural parameters and the ratio of long axis to short axis of structural parameters influences output parameters more than the pitch, which provides theoretical guides for structure improvement and inlet velocities selection of RBHE given structure and inlet velocities. Three sets of optimal results were obtained by employing multi-objective genetic algorithms to maximize the heat transfer coefficient and minimize the pressure drop simultaneously on response surfaces. Compared with the original structure, the heat transfer coefficient increases averagely by 19.17%; the pressure drop decreases by an average of 5.74%; the comprehensive performance hp is enhanced by 26.42%.

Key words: rod-baffle heat exchanger, twisted oval tube, numerical simulation, genetic aggregation response surface model, multi-objective genetic algorithm, optimization, turbulent flow

中图分类号: 

  • TK 124

图1

螺旋扁管折流杆换热器和螺旋扁管几何结构示意图"

图2

实验与模拟结果对比"

图3

多目标遗传算法优化流程"

图4

不同速度下传热系数随螺距的变化曲线"

图5

不同速度下传热系数随长短轴之比的变化曲线"

图6

不同速度下压降随螺距的变化曲线"

图7

不同速度下压降随长短轴之比的变化曲线"

图8

输出参数对输入参数局部敏感度"

表1

多目标优化结果"

结构 s/mm r h/[W/(m2?K)] Δp/Pa
原结构 650.00 2.05 1523.30 170.57
优化结构1 222.15 2.86 1890.10 161.94
优化结构2 412.19 2.95 1807.96 160.64
优化结构3 587.00 2.99 1747.73 159.75
1 李炜炜 . 管壳式换热器壳程强化传热研究[D]. 武汉: 华中科技大学, 2007.
Li W W . Study on heat transfer enhancement in shell side of shell and tube heat exchangers[D]. Wuhan: Huazhong University of Science and Technology, 2007.
2 吴金星, 魏新利, 董其伍, 等 . 花瓣孔板纵流式换热器的研发及试验研究[J]. 高校化学工程学报, 2008, 22(2): 205-209.
Wu J X , Wei X L , Dong Q W , et al . Experimental investigation and development of the petal orifice-baffle longitudinal flow type heat exchangers[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(2): 205-209.
3 吴金星, 董其伍, 刘敏珊, 等 . 折流杆换热器壳程湍流和传热的数值模拟[J]. 高校化学工程学报, 2006, 20(2): 213-216.
Wu J X , Dong Q W , Liu M S , et al . Numerical simulation on the turbulent flow and heat transfer in the shell side of the rod baffle heat exchanger[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(2): 213-216.
4 Yuan Z C , Liu J Z , Yan H S . Performance comparison of rod-baffle and segment-baffle heat exchangers using numerical simulations[J]. Applied Mechanics and Materials, 2014, 595: 128-133.
5 Gentry C C , Young R K , Small W M . RODbaffle heat exchanger thermal-hydraulic predictive methods [C]//Proceedings 23rd International Heat Transfer Conference. Munich, 1982: 197-202.
6 Gentry C C , Young R K , Small W M . RODbaffle heat exchanger thermal-hydraulic predictive methods for bare and low-finned tubes[C]//Proceedings 22nd International Heat Transfer Conference. Niagara, 1984: 104-109.
7 Gentry C C , Small W M . RODbaffle exchanger thermal-hydraulic predictive models over expanded baffle-spacing and Reynolds number ranges[C]//Proceedings 23rd International Heat Transfer Conference. Denver, 1985: 103-108.
8 Gentry C C . RODbaffle heat exchanger technology[J]. Chemical Engineering Progress, 1990, 86(7): 48-57.
9 马小明, 钱颂文, 朱冬生, 等 . 管壳式换热器[M].北京: 中国石化出版社, 2010: 98-201.
Ma X M , Qian S W , Zhu D S , et al . Shell and Tube Heat Exchangers[M]. Beijing: China Petrochemical Press, 2010: 98-201.
10 董其伍, 刘敏珊 . 纵流壳程换热器[M]. 北京: 化学工业出版社, 2006: 189-235.
Dong Q W , Liu M S . Heat Exchangers with Longitudinal Flow of Shell Side[M]. Beijing: Chemical Industry Press, 2006: 189-235.
11 Wang X S , Wang R Z , Wu J Y . Experimental investigation of a new-style double-tube heat exchanger for heating crude oil using solar hot water[J]. Applied Thermal Engineering, 2005, 25(11/12): 1753-1763.
12 Yan L W , Wu J X , Wang Z W . Industrially experimental investigations and development of the curve-ROD baffle heat exchanger[J]. Journal of Shanghai University: English Edition, 2004, 8(3): 337-341.
13 严良文, 王志文 . 波形折流杆换热器的工业实验研究[J]. 华东理工大学学报, 2004, 3(8): 478-480.
Yan L W , Wang Z W . Industrial investigation of heat exchanger with curve-ROD baffle[J]. Journal of East China University of Science and Technology, 2004, 3(8): 478-480.
14 孔松涛, 董其伍, 刘敏珊 . 菱形折流杆换热器传热研究[J]. 石油机械, 2007, 35(1): 683-686.
Kong S T , Dong Q W , Liu M S . Study of heat transfer in diamond rod-baffle heat exchanger[J]. China Petroleum Machinery, 2007, 35(1): 683-686.
15 陈文昕 . 折流杆换流器的数值模拟与实验研究[D]. 广州: 华南理工大学, 2006.
Chen W X . Numerical simulation and experimental research of rod baffle heat exchangers[D]. Guangzhou: South China University of Technology, 2006.
16 严良文, 潘雷, 阚树林 . 折流杆换热器的壳程结构参数对协同场的影响[J]. 压力容器, 2008, 25(11): 19-23, 14.
Yan L W , Pan L , Kan S L . Influence of a rod baffle heat exchanger's structural parameters for field coordination[J]. Press Vessel Technology, 2008, 25(11): 19-23, 14.
17 王定标, 胡祥报, 郭茶秀, 等 . 大型纵流壳程换热器三维流动与传热数值模拟[J]. 郑州大学学报: 工学版, 2002, 23(3): 13-18.
Wang D B , Hu X B , Guo C X , et al . Simulation Technology of fluid flow and heat transfer in large heat exchanger with longitudinal flow of shell side[J]. Journal of Zhengzhou University: Engineering Science, 2002, 23(3): 13-18.
18 Dong Q W , Wang Y Q , Liu M S . Numerical and experimental investigation of shell side characteristics for ROD-baffle heat exchanger[J]. Applied Thermal Engineering, 2008, 28(7): 651-660.
19 郭崇志, 梁泉水 . 折流杆换热器数值模拟新方法[J]. 化工进展, 2007, 26(8): 1198-1200, 1206.
Guo C Z , Liang Q S . A new numerical simulation method for rod-baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2007, 26(8): 1198-1200, 1206.
20 徐烨琨, 刘成, 李永辉 . 折流杆换热器的研究方法进展[J]. 化工进展, 2014 (7): 1671-1676.
Xu Y K , Liu C , Li Y H . Progress of rod baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2014(7): 1671-1676.
21 刘佳驹 . 螺旋异型管强化传热数值研究及PIV实验分析[D]. 武汉: 华中科技大学, 2015
Liu J J . Numerical research and PIV experimental analysis on heat transfer enhancement of helical shaped tubes[D].Wuhan: Huazhong University of Science and Technology, 2015.
22 Liu J J , Liu Z C , Liu W . 3D numerical study on shell side heat transfer and flow characteristics of rod-baffle heat exchangers with spirally corrugated tubes[J]. International Journal of Thermal Sciences, 2015, 89: 34-42.
23 Wang X T , Zheng N B , Liu P , et al . Analysis of flow and heat transfer capability in rod baffle heat exchangers with ripple rods[J]. Journal of Engineering Thermophysics, 2016, 37: 1758-1762.
24 Yu C L , Ren Z W , Zeng M . Numerical investigation of shell-side performance for shell and tube heat exchangers with two different clamping type anti-vibration baffles[J]. Applied Thermal Engineering, 2018, 133: 125-136.
25 You Y H , Zhang F H , Fan A W , et al . A numerical study on the turbulent heat transfer enhancement of Rodbaffle heat exchanger with staggered tubes supported by round rods with arc cuts[J]. Applied Thermal Engineering, 2015, 76: 220-232.
26 Wang X T , Zheng N B , Liu P , et al . Numerical investigation of shell side performance of a double shell side rod baffle heat exchanger[J]. International Journal of Heat and Mass Transfer, 2017, 108(B): 2029-2039.
27 曾志, 张颖 . 螺旋扭曲扁管式换热管流体流动及传热特性的CFD仿真[J]. 冶金能源, 2018, 37(4): 33-36.
Zeng Z , Zhang Y . CFD simulation of fluid flow and heat transfer characteristics in the twisted heat exchange tube[J]. Energy for Metallurgical Industry, 2018, 37(4): 33-36.
28 Kim H R , Kim S , Kim M , et al . Numerical study of fluid flow and convective heat transfer characteristics in a twisted elliptic tube[J]. Journal of Mechanical Science and Technology, 2016, 30(2): 719-732.
29 Ebrahimi A , Roohi E . Numerical study of flow patterns and heat transfer in mini twisted oval tubes[J]. International Journal of Modern Physics C, 2015.
30 Cheng J L , Qian Z Q , Wang Q . Analysis of heat transfer and flow resistance of twisted oval tube in low Reynolds number flow[J]. International Journal of Heat and Mass Transfer, 2017, 109: 761-777.
31 黄其斌, 黄风华, 谢明炜, 等 . 螺旋扁管管内沸腾流动与传热特性研究[J]. 低温与超导, 2016, (2): 61-66.
Huang Q B , Huang F H , Xie M W , et al . Study on flow and boiling heat transfer characteristics in spiral flat tube[J]. Cryogenics & Superconductivity, 2016, (2): 61-66.
32 管屏, 安方涛, 卢玫, 等 . 螺旋扭曲扁管管外传热性能数值模拟[J]. 轻工机械, 2016, 34(6): 15-20.
Guan P , An F T , Lu M , et al . Numerical simulation on heat transfer performance of laminar flow outside twisted oval tube[J]. Light Industry Machinery, 2016, 34(6): 15-20.
33 董新宇, 毕勤成, 贺宇峰, 等 . 钛合金螺旋扁管换热器流阻与传热性能实验研究[J]. 西安交通大学学报, 2018, 52(1): 14-19.
Dong X Y , Bi Q C , He Y F , et al . Experimental research on the flow friction and heat transfer performance in titanium alloy twisted tube[J]. Journal of Xi’an Jiaotong University, 2018, 52(1): 14-19.
34 朱冬生, 石仲璟, 钱泰磊, 等 .扭曲椭圆管换热器的数值模拟及场协同分析[J]. 高校化学工程学报, 2015, 29(1): 64-71.
Zhu D S , Shi Z J , Qian T L , et al . Numerical simulation and field synergy analysis of twisted oval tube heat exchanger[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(1): 64-71.
35 王福军 . 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
Wang F J . Computational Fluid Dynamics Analysis—Theory and Application of CFD Software[M]. Beijing: Tsinghua University Press, 2004.
36 邢华伟 . 新型换热设备——折流杆换热器性能研究[D]. 武汉: 华中科技大学, 1996.
Xing H W . New-type heat transfer equipment-research on performance of rob baffle heat exchangers[D]. Wuhan: Huazhong University of Science and Technology, 1996.
37 Vian F A C , Haftka R T , Steffen V . Multiple surrogates: how cross-validation errors can help us to obtain the best predictor[J]. Structural & Multidisciplinary Optimization, 2009, 39(4): 439-457.
38 Acar E . Various approaches for constructing an ensemble of metamodels using local measures[J]. Structural & Multidisciplinary Optimization, 2010, 42(6): 879-896.
39 吴伟, 崔光华 . 星点设计-效应面优化法及其在药学中的应用[J]. 国外医学: 药学分册, 2000, 27(5): 292-298.
Wu W , Cui G H . Application of central composite response surface optimizing design in pharmacy[J]. Foreign Medical Sciences Section on Pharmacy, 2000, 27(5): 292-298.
40 李颖, 王悦, 邹梅娟, 等 . 中心复合设计-效应面法优化阿魏酸哌嗪缓释片处方[J]. 中国药剂学杂志, 2009, 7(4): 242-250.
Li Y , Wang Y , Zou M J , et al . Formulation optimization of piperazine ferulate sustained-release tablets by central composite design-response surface methodology[J]. Chinese Journal of Pharmaceutics, 2009, 7(4): 242-250.
41 Wen J , Yang H Z , Jian G P , et al . Energy and cost optimization of shell and tube heat exchanger with helical baffles using Kriging metamodel based on MOGA[J]. International Journal of Heat and Mass Transfer, 2016, 98: 29-39.
42 Wang S M , Jian G P , Wang J R , et al . Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 116: 743-750.
43 Wen J , Li K , Wang C L , et al . Optimization investigation on configuration parameters of sine wavy fin in plate-fin heat exchanger based on fluid structure interaction analysis[J]. International Journal of Heat and Mass Transfer, 2019, 131: 385-402.
44 Jian W , Gu X , Wang M M , et al . Multi-parameter optimization of shell-and-tube heat exchanger with helical baffles based on entransy theory[J]. Applied Thermal Engineering, 2018, 130: 804-813.
45 Wang S M , Jian G P , Xiao J , et al . Optimization investigation on configuration parameters of spiral-wound heat exchanger using Genetic Aggregation response surface and Multi-Objective Genetic Algorithm[J]. Applied Thermal Engineering, 2017, 119: 603-609.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[3] 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[7] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[8] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[9] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[10] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[11] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[12] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[13] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[14] 李闯, 张扬, 刘小娟, 王学重. 添加剂作用下阿司匹林结晶模拟和实验研究[J]. 化工学报, 2021, 72(9): 4796-4807.
[15] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王志, 赵媛媛, 叶楠, 王纪孝, 赵之平, 王世昌. 微滤和超滤膜流动电位的四种测量操作方式[J]. CIESC Journal, 2006, 14(4): 456 -463 .
[2] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(I)非传质操作[J]. CIESC Journal, 2007, 15(3): 361 -368 .
[3] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[4] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[5] 董朝霞, 李明远, 吴肇亮, 林梅钦. 交联聚合物线团的变形能力研究[J]. CIESC Journal, 2003, 11(6): 686 -690 .
[6] 张晖, 宋孟浩, 黄金宝. 2-氯酚污染土壤原位臭氧化修复的数学模型[J]. CIESC Journal, 2003, 11(5): 555 -558 .
[7] 郑重鸣, FOO YinDin, Jeffery Philip Obbard, 林建平, 岑沛霖. 黄孢原毛平革菌产酶的简化结构动力学模型[J]. CIESC Journal, 2003, 11(4): 414 -419 .
[8] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[9] 谭小耀, 杨乃涛, K.Li. 用于甲烷偶联的SrCe0.95Yb0.05O3-α中空纤维膜反应器建模[J]. CIESC Journal, 2003, 11(3): 289 -296 .
[10] 余世明, 王海青. 离线辨识和在线辨识相结合的广义预测控制算法在固定床反应器温度控制中的应用[J]. CIESC Journal, 2003, 11(1): 49 -54 .