化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 336-342.doi: 10.11949/0438-1157.20190532

• 材料化学工程与纳米技术 • 上一篇    下一篇

Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究

王甜蜜(),唐桂华()   

  1. 西安交通大学能源与动力工程学院热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-05-19 修回日期:2019-05-27 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 唐桂华 E-mail:tianmiwang@qq.com;ghtang@mail.xjtu.edu.cn
  • 作者简介:王甜蜜(1993—),女,博士研究生,tianmiwang@qq.com
  • 基金资助:
    国家自然科学基金项目(51825604)

Plasmonic nanofluids based on Janus nanosheets and sandwich-structured nanosheets for solar energy harvest

Tianmi WANG(),Guihua TANG()   

  1. MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-05-19 Revised:2019-05-27 Online:2019-09-05 Published:2019-11-07
  • Contact: Guihua TANG E-mail:tianmiwang@qq.com;ghtang@mail.xjtu.edu.cn

摘要:

基于离散偶极近似法(DDA)计算了不同组分的Janus三角纳米片和“三明治”三角纳米片的消光特性,两种纳米片在紫外-可见光波段均出现了明显的吸收峰。当纳米片较小时,消光特性主要以吸收为主,当纳米片逐渐增大,散射作用开始明显。当纳米片增大时,吸收峰向长波方向移动并且峰会变宽。二氧化硅与银的组合能在较宽的波段内激发表面等离激元效应,因此波峰比金银组合纳米片的波峰宽,但是吸收峰值较后者低。增加纳米片的层数,或者添加纳米片的组分,可以在一定范围内对纳米片的消光特性进行调节,从而提高太阳能光热转换效率。

关键词: 太阳能, 离散偶极近似, 消光特性, 光热转换特性, 纳米结构, 数值模拟

Abstract:

Direct absorption solar thermal collectors (DASC) explore the photo-thermal conversion characteristics of fluids to convert solar radiation into thermal energy. Plasmonic nanofluids have been used to improve the efficiency of DASC as working fluids, because of the localized surface plasmon resonance (LSPR) effect excited on the surface of metallic nanoparticles. Recently, Janus materials have witnessed fast development due to their diversified promising performances and practical applications. Compared with their spherical counterparts, Janus nanosheets have gained more concerns for their highly anisotropic shape. Herein, the discrete dipole approximation (DDA) is employed to calculate the extinction characteristics of Janus triangular nanosheets and sandwich-structured triangular nanosheets with different sizes. The results show that the LSPR of Janus nanosheets and sandwich-structured nanosheets can be improved by tuning the size. For Janus nanosheets, the thickness plays an important role on the resonance strength, whereas it has little effect on resonance frequency. On the contrary, the resonance strength and resonance frequency of sandwich-structured nanosheets can be influenced by the thickness evidently. Effective control of extinction characteristics can be achieved by varying the relative thickness of each layer of nanosheets, to adjust the extinction peak to the desired band. Optimizing the thickness of the Janus nanosheets and sandwich-structured nanosheets, or combining different sizes of nanosheets, will broaden the effective absorption band, thereby improve the photo-thermal conversion efficiency and the efficiency of direct absorption solar thermal collectors.

Key words: solar energy, discrete dipole approximation, extinction characteristics, photo-thermal conversion, nanostructure, numerical simulation

中图分类号: 

  • TK 124

图1

Janus三角纳米片(a)和“三明治”三角纳米片(b)结构示意图"

表1

Janus三角纳米片和“三明治”三角纳米片几何尺寸"

a eff /nm l/nm h/nm Janus三角纳米片层厚 /nm “三明治”三角纳米片层厚 /nm
5 26.3 5.3 2.6 1.8
10 52.5 10.5 5.33 3.5
20 105.1 21.0 10.5 7.0
30 157.6 31.5 15.8 10.5
50 262.7 52.5 26.3 17.5
60 315.3 63.1 31.5 21.0
80 420. 4 84.1 42.0 28.0
100 525.5 105.1 52.5 35.0

图2

银、二氧化硅和金的介电函数"

图3

银-二氧化硅Janus三角纳米片和银-金Janus三角纳米片的消光特性"

图4

银-二氧化硅-银“三明治”三角纳米片和银-金-银“三明治”三角纳米片的消光特性"

图5

二氧化硅-银-二氧化硅“三明治”三角纳米片的消光特性"

1 Lund H , Mathiesen B V . Energy system analysis of 100% renewable energy systems—the case of Denmark in years 2030 and 2050 [J]. Energy, 2009, 34(5): 524-531.
2 Kalnæs S E , Jelle B P . Phase change materials and products for building applications: a state-of-the-art review and future research opportunities [J]. Energy and Buildings, 2015, 94: 150-176.
3 Lin Y , Alva G , Fang G . Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials [J]. Energy, 2018, 165: 685-708.
4 Thirugnanasambandam M , Iniyan S , Goic R . A review of solar thermal technologies [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 312-322.
5 Wang J , O’Donnell J , Brandt A R . Potential solar energy use in the global petroleum sector [J]. Energy, 2017, 118: 884-892.
6 Li G , Shittu S , Diallo T M O , et al . A review of solar photovoltaic-thermoelectric hybrid system for electricity generation [J]. Energy, 2018, 158: 41-58.
7 Gorji T B , Ranjbar A A . Thermal and exergy optimization of a nanofluid-based direct absorption solar collector [J]. Renewable Energy, 2017, 106: 274-287.
8 Qin C , Kang K , Lee I , et al . Optimization of a direct absorption solar collector with blended plasmonic nanofluids [J]. Solar Energy, 2017, 150: 512-520.
9 Leong K Y , Ong H C , Amer N H , et al . An overview on current application of nanofluids in solar thermal collector and its challenges [J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1092-1105.
10 Loni R , Asli-Ardeh E A , Ghobadian B , et al . Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: experimental study [J]. Energy, 2018, 164: 275-287.
11 Gorji T B , Ranjbar A A . A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs) [J]. Renewable and Sustainable Energy Reviews, 2017, 72: 10-32.
12 Minardi J E , Chuang H N . Performance of a “black” liquid flat-plate solar collector [J]. Solar Energy, 1975, 17(3): 179-183.
13 Liu X , Xuan Y . Full-spectrum volumetric solar thermal conversion via photonic nanofluids [J]. Nanoscale, 2017, 9(39): 14854-14860.
14 Green M A , Pillai S . Harnessing plasmonics for solar cells [J]. Nature Photonics, 2012, 6: 130-132.
15 Ma X C , Dai Y , Yu L , et al . Energy transfer in plasmonic photocatalytic composites [J]. Light: Science & Applications, 2016, 5: e16017.
16 Yang X , Yu H , Guo X , et al . Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction [J]. Materials Today Energy, 2017, 5: 72-78.
17 An W , Wu J , Zhu T , et al . Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter [J]. Applied Energy, 2016, 184: 197-206.
18 Hu J T , Odom T W , Lieber C M . Chemistry and physics in one dimension: synthesis and properties of nanowires and nano-tubes [J]. Accounts of Chemical Research, 1999, 32(5): 435-445.
19 Pan Z W , Dai Z R , Wang Z L . Nanobelts of semiconducting oxides [J].Science, 2001, 291: 1947-1949.
20 雷琴 . 利用DDA方法研究金属银及其核壳结构纳米粒子的光学性质[D]. 天津: 南开大学, 2014.
Lei Q . Study on optical properties of metallic silver and its core-shell structure nanoparticles by DDA method [D]. Tianjin: Nankai University, 2014.
21 Xuan Y M , Duan H L , Li Q . Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles [J]. RSC Advances, 2014, 4(31): 16206-16213.
22 Lv W , Phelan P E , Swaminathan R , et al . Multifunctional core-shell nanoparticle suspensions for efficient absorption [J]. Journal of Solar Energy Engineering, 2013, 135(2): 021004.
23 Wu Y , Zhou L , Du X , et al . Optical and thermal radiative properties of plasmonic nanofluids containing core–shell composite nanoparticles for efficient photothermal conversion [J]. International Journal of Heat and Mass Transfer, 2015, 82: 545-554.
24 Lai X . Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems [J]. Energy & Environmental Science, 2012, 5(2): 5604-5618.
25 Dong Z , Lai X , Halpert J E , et al . Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency [J]. Advanced Materials, 2012, 24(8): 1046-1049.
26 Lou X . Hollow micro/nanostructures: synthesis and applications [J]. Materials, 2008, 20(21): 3987-4019.
27 Grald E W , Kuehn T H . Performance analysis of a parabolic trough solar collector with a porous absorber receiver [J]. Solar Energy, 1989, 42(4): 281-292.
28 de Gennes P G . Soft matter [J]. Reviews of Modern Physics, 1992, 64(3): 645-648.
29 Du M , Tang G H . Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting [J]. Solar Energy, 2016, 137: 393-400.
30 Rakić A D , Djurišić A B , Elazar J M , et al . Optical properties of metallic films for vertical-cavity optoelectronic devices [J]. Applied Optics, 1998, 37(22): 5271-5283.
[1] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[2] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[3] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[4] 贾文华, 田茂诚, 张冠敏, 魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[5] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[6] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[7] 刘磊磊, 夏新林, 侯凌霄, 孙创, 陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[8] 耿庆庆, 李瑞琦, 杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
[9] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[10] 王慧丽, 周国兵. 局部低温诱发过冷三水醋酸钠释能特性实验研究[J]. 化工学报, 2019, 70(9): 3346-3352.
[11] 白炳林, 杨晓宏, 田瑞, 史盼敬, 李达. 太阳能光热-光电中空纤维真空膜蒸馏系统理论与实验研究[J]. 化工学报, 2019, 70(9): 3517-3526.
[12] 王斯民, 孙利娟, 宋晨, 张早校, 文键. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362.
[13] 向静, 王宏, 朱恂, 丁玉栋, 廖强, 陈蓉. 荷叶表面的复刻及微纳结构对疏水性能的影响[J]. 化工学报, 2019, 70(9): 3545-3552.
[14] 张宇轩, 翟晓强. 感温变色建筑涂料的制备及光谱反射性能实验研究[J]. 化工学报, 2019, 70(9): 3537-3544.
[15] 王浩宇, 刘应书, 张传钊, 杨雄, 陈江伟. π型向心径向流吸附器变质量流动特性研究[J]. 化工学报, 2019, 70(9): 3385-3395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王良华, 崔觉剑, 姚克俭. Numerical Simulation and Analysis of Gas Flow Field in Serrated Valve Column[J]. CIESC Journal, 2008, 16(4): 541 -546 .
[2] 陈玉保, 宁平, 谢有畅, 陈云华, 孙暠, 刘志云. Pilot-scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption[J]. CIESC Journal, 2008, 16(5): 715 -721 .
[3] 傅永峰, 苏宏业, 张英, 褚健. Adaptive Soft-sensor Modeling Algorithm Based on FCMISVM and Its Application in PX Adsorption Separation Process[J]. CIESC Journal, 2008, 16(5): 746 -751 .
[4] 王学猛, 蒋登高, 耿再新. Isobaric Vapor-Liquid Equilibrium of Binary System 2-Cyclohexen-1-one and 1, 2-Epoxycyclohexane[J]. CIESC Journal, 2009, 17(1): 136 -139 .
[5] 康英伟, 李俊, 曹广益, 屠恒勇, 李箭, 杨杰. One-dimensional Dynamic Modeling and Simulation of a Planar Direct Internal Reforming Solid Oxide Fuel Cell[J]. CIESC Journal, 2009, 17(2): 304 -317 .
[6] Joanna Koralewska, Krzysztof Piotrowski, Boguslawa Wierzbowska, Andrzej Matynia. Kinetics of Reaction-Crystallization of Struvite in the Continuous Draft Tube Magma Type Crystallizers——Influence of Different Internal Hydrodynamics[J]. CIESC Journal, 2009, 17(2): 330 -339 .
[7] 陈良, Yinlun Huang. Integrated Product and Process Control for Sustainable Semiconductor Manufacturing[J]. CIESC Journal, 2011, 19(2): 192 -198 .
[8] 罗宁, 卢英妹, 江燕斌. Solubility of Paclitaxel in Mixtures of Dichloromethane and Supercritical Carbon Dioxide [J]. CIESC Journal, 2011, 19(4): 558 -564 .
[9] 杨刚, 史宏, 刘文强, 邢卫红, 徐南平. Investigation of Mg2+/Li+Separation by Nanofiltration[J]. CIESC Journal, 2011, 19(4): 586 -589 .
[10] 马俊, 李进龙, 范冬福, 彭昌军, 刘洪来, 胡英. Modeling pVT Properties and Vapor-Liquid Equilibrium of Ionic Liquids Using Cubic-plus-association Equation of State[J]. CIESC Journal, 2011, 19(6): 1009 -1016 .