化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 191-200.doi: 10.11949/0438-1157.20190609

• 流体力学与传递现象 • 上一篇    下一篇

填充多级相变材料的套管式储热器性能研究

王宁1(),张晨宇1,徐洪涛1(),张剑飞2   

  1. 1. 上海理工大学能源与动力工程学院,上海市动力工程多相流动与传热重点实验室,上海 200093
    2. 西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-06-02 修回日期:2019-06-19 出版日期:2019-09-06 发布日期:2019-09-06
  • 通讯作者: 徐洪涛 E-mail:tioddog@foxmail.com;htxu@usst.edu.cn
  • 作者简介:王宁(1995—),男,硕士研究生,tioddog@foxmail.com
  • 基金资助:
    国家重点研发计划项目(2018YFF0216000)

Performance investigation of sleeve tube heat exchanger filled with multi-layer phase change materials

Ning WANG1(),Chenyu ZHANG1,Hongtao XU1(),Jianfei ZHANG2   

  1. 1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
    2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-06-02 Revised:2019-06-19 Published:2019-09-06 Online:2019-09-06
  • Contact: Hongtao XU E-mail:tioddog@foxmail.com;htxu@usst.edu.cn

摘要:

提出一种填充三级相变材料的水平套管式储热器,并建立该储热器的综合性能评价指标,基于该指标数值预测和研究了分隔壁面、翅片布置和方向等参数对系统综合性能的影响。结果表明:分隔壁面对PCM的自然对流有明显的抑制作用,且相变温度越高,抑制效果越显著;相对于无翅片结构,在各级PCM中布置翅片的储热器的综合储热效率提高了约2.27倍;不同翅片布置方向下PCM液相率的变化可分为两个不同阶段,且均匀布置的翅片结构(Case2)具有较优的综合性能;各级PCM间熔化速率的不均匀性是制约系统整体储热性能的关键因素;Case5的翅片布置方式使各级PCM间熔化速率的均匀性明显改善,与Case2相比,其综合储热效率提高了28.30%。

关键词: 太阳能, 传热, 相变材料, 翅片优化, 数值模拟

Abstract:

A horizontal sleeve tube heat exchanger filled with three-layer phase change materials is proposed, and a comprehensive storage density evaluation criterion of the heat storage device is established. Based on the criterion, the effects of separated walls, fin arrangements and direction are numerically predicted and investigated. The results show that the natural convection of PCM (phase change material) is significantly suppressed by separated walls, and the higher the phase change temperature, the more significant the suppression effect. Compared with the sleeve tube heat exchanger without fins, the comprehensive thermal storage efficiency for the exchanger with fins in each layer PCM is improved by 2.27 times. The variations of PCM liquid fraction can be divided into two different stages under various fin arrangement directions, and the evenly arranged fin structure (Case2) has superior thermal storage performance. The non-uniformity of the PCM melting rate in each layer is a key factor that restricts the overall system performance of the thermal storage characteristics. Compared with Case2, the uniformity of the melting rate between different-layer PCMs can be significantly improved by Case5, and the comprehensive thermal storage efficiency is improved by 28.30%.

Key words: solar energy, heat transfer, phase change material, fins optimization, numerical simulation

中图分类号: 

  • TK 512

图1

填充三级相变材料的水平套管式储热器"

图2

二维模型"

表1

几何参数"

Ri/mmR1/mmR2/mmR3/mmRo/mm管壁及翅片厚度/mm
20601001401601

图3

翅片布置方式"

表2

热物性参数"

材料熔化温度/℃密度/(kg·m-3)比热容/(J·kg-1·K-1)热导率/(W·m-1·K-1)相变潜热/(J·kg-1)动力黏度/(Pa·s)
RT42[26]4276020000.21650000.0235
RT50[27]5076020000.21600000.0275
RT60[28]6077020000.21600000.02853
8978381387.6

图4

计算区域和边界条件"

图5

网格独立性验证"

图6

时间步长独立性验证"

图7

模型验证"

图8

分隔壁面对PCM液相率的影响"

图9

有无分隔壁面下PCM(RT60)的温度和液相率云图"

图10

有无翅片结构下PCM的温度和液相率云图"

图11

翅片对系统整体液相率的影响"

图12

翅片对各级PCM液相率的影响"

图13

不同翅片角度对液相率的影响"

图14

不同翅片角度下各级PCM的熔化时间"

图15

Case2和Case5各级PCM的液相率变化"

1 AbdulateefA M, MatS, AbdulateefJ, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1620-1635.
2 AlvaG, LinY, FangG. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378.
3 IbrahimN I, Al-SulaimanF A, RahmanS, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50.
4 GasiaJ, MiróL, CabezaL F. Materials and system requirements of high temperature thermal energy storage systems: a review (2): Thermal conductivity enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1584-1601.
5 CastellA, SoléC. An overview on design methodologies for liquid–solid PCM storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 289-307.
6 MahdiJ M, LohrasbiS, NsoforE C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. International Journal of Heat and Mass Transfer, 2019, 137: 630-649.
7 DengS, NieC, JiangH, et al. Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2019, 130: 532-544.
8 KamkariB, GroulxD. Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles[J]. Experimental Thermal and Fluid Science, 2018, 97: 94-108.
9 JiC, QinZ, DubeyS, et al. Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection[J]. International Journal of Heat and Mass Transfer, 2018, 127: 255-265.
10 ZhengH, WangC, LiuQ, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381.
11 XuY, LiM J, ZhengZ J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880.
12 MahdiJ M, NsoforE C. Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system[J]. Journal of Energy Storage, 2018, 20: 529-541.
13 GorzinM, HosseiniM J, RahimiM, et al. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger[J]. Journal of Energy Storage, 2019, 22: 88-97.
14 MahdiJ M, NsoforE C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986.
15 Al-JethelahM, TasnimS H, MahmudS, et al. Nano-PCM filled energy storage system for solar-thermal applications[J]. Renewable Energy, 2018, 126: 137-155.
16 DasN, TakataY, KohnoM, et al. Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit[J]. International Journal of Heat and Mass Transfer, 2017, 113: 423-431.
17 DengS, NieC, WeiG, et al. Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube[J]. Energy and Buildings, 2019, 183: 161-173.
18 Al-AbidiA A, MatS, SopianK, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156.
19 WangP, YaoH, LanZ, et al. Numerical investigation of PCM melting process in sleeve tube with internal fins[J]. Energy Conversion and Management, 2016, 110: 428-435.
20 EslamnezhadH, RahimiA B. Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins[J]. Applied Thermal Engineering, 2017, 113: 813-821.
21 AsgharianH, BaniasadiE. A review on modeling and simulation of solar energy storage systems based on phase change materials[J]. Journal of Energy Storage, 2019, 21: 186-201.
22 HamzaH, HanchiN, AbouelkhayratB, et al. Location and thickness effect of two phase change materials between layers of roof on energy consumption for air-conditioned room[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021009.
23 MosaffaA H, Infante FerreiraC A, TalatiF, et al. Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7.
24 SefidanA M, SojoudiA, SahaS C, et al. Multi-layer PCM solidification in a finned triplex tube considering natural convection[J]. Applied Thermal Engineering, 2017, 123: 901-916.
25 ZhengZ J, XuY, LiM J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance[J]. Applied Energy, 2018, 220: 447-454.
26 JiC, QinZ, LowZ, et al. Non-uniform heat transfer suppression to enhance PCM melting by angled fins[J]. Applied Thermal Engineering, 2018, 129: 269-279.
27 ElbahjaouiR, El QarniaH, NaimiA. Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems[J]. Energy and Buildings, 2018, 168: 438-456.
28 PrietoM M, SuárezI, GonzálezB. Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems[J]. Applied Thermal Engineering, 2017, 116: 11-23.
29 程友良, 韩健, 张金生. 相变蓄热单元蓄/放热过程的数值模拟研究[J]. 太阳能学报, 2018, (5): 1237-1244.
ChengY L, HanJ, ZhangJ S. Numerical simulation on charge/discharge process of latent heat storage unit[J]. Acta Energiae Solaris Sinica, 2018, (5): 1237-1244.
30 陶文铨. 数值传热学 [M]. 2版. 西安: 西安交通大学出版社, 2001.
TaoW Q. Numerical Heat Transfer [M]. 2nd ed.Xi’an: Xi’an Jiaotong University Press, 2001.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[3] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[4] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[5] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[6] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[7] 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29.
[8] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[9] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[10] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[11] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[12] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[13] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[14] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[15] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[2] 唐致远, 冯季军, 彭亚宁. 采用不同锰源合成尖晶石LiMn2O4正极材料[J]. CIESC Journal, 2004, 12(1): 124 -127 .
[3] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[4] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[5] 杜红彬, 滕虎, 姚平经. 正交小波(包)的矩阵表达[J]. CIESC Journal, 2002, 10(6): 701 -705 .
[6] 张治山, 赵文, 王艳丽, 周传光, 袁希钢. 基于瞬时目标函数曲线特性的反应器网络综合[J]. CIESC Journal, 2003, 11(4): 436 -440 .
[7] 陈新志, 王连尉, 侯虞钧. 一种完全型形状因子对应态原理[J]. CIESC Journal, 2001, 9(4): 421 -426 .
[8] 虞启明, pairat Kaewsarn, 马卫东, Jose T. Matheickal, 尹平河. 用海藻类生物吸附剂去除废水中的重金属离子——一种经济型新技术[J]. CIESC Journal, 2001, 9(2): 133 -136 .
[9] 高习群, 马友光, 朱春英, 余国琮. 单泡吸收过程的界面传质机理[J]. CIESC Journal, 2006, 14(2): 158 -163 .
[10] 王淑梅, 于养信, 高光华. 气体透过碳膜的非平衡动力学模拟研究
[J]. CIESC Journal, 2006, 14(2): 164 -170 .