化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 191-200.DOI: 10.11949/0438-1157.20190609
收稿日期:
2019-06-02
修回日期:
2019-06-19
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
徐洪涛
作者简介:
王宁(1995—),男,硕士研究生,基金资助:
Ning WANG1(),Chenyu ZHANG1,Hongtao XU1(),Jianfei ZHANG2
Received:
2019-06-02
Revised:
2019-06-19
Online:
2019-09-06
Published:
2019-09-06
Contact:
Hongtao XU
摘要:
提出一种填充三级相变材料的水平套管式储热器,并建立该储热器的综合性能评价指标,基于该指标数值预测和研究了分隔壁面、翅片布置和方向等参数对系统综合性能的影响。结果表明:分隔壁面对PCM的自然对流有明显的抑制作用,且相变温度越高,抑制效果越显著;相对于无翅片结构,在各级PCM中布置翅片的储热器的综合储热效率提高了约2.27倍;不同翅片布置方向下PCM液相率的变化可分为两个不同阶段,且均匀布置的翅片结构(Case2)具有较优的综合性能;各级PCM间熔化速率的不均匀性是制约系统整体储热性能的关键因素;Case5的翅片布置方式使各级PCM间熔化速率的均匀性明显改善,与Case2相比,其综合储热效率提高了28.30%。
中图分类号:
王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
Ning WANG, Chenyu ZHANG, Hongtao XU, Jianfei ZHANG. Performance investigation of sleeve tube heat exchanger filled with multi-layer phase change materials[J]. CIESC Journal, 2019, 70(S2): 191-200.
Ri/mm | R1/mm | R2/mm | R3/mm | Ro/mm | 管壁及翅片厚度/mm |
---|---|---|---|---|---|
20 | 60 | 100 | 140 | 160 | 1 |
表1 几何参数
Table 1 Geometric parameters
Ri/mm | R1/mm | R2/mm | R3/mm | Ro/mm | 管壁及翅片厚度/mm |
---|---|---|---|---|---|
20 | 60 | 100 | 140 | 160 | 1 |
材料 | 熔化温度/℃ | 密度/(kg·m-3) | 比热容/(J·kg-1·K-1) | 热导率/(W·m-1·K-1) | 相变潜热/(J·kg-1) | 动力黏度/(Pa·s) |
---|---|---|---|---|---|---|
RT42[ | 42 | 760 | 2000 | 0.2 | 165000 | 0.0235 |
RT50[ | 50 | 760 | 2000 | 0.2 | 160000 | 0.0275 |
RT60[ | 60 | 770 | 2000 | 0.2 | 160000 | 0.02853 |
铜 | — | 8978 | 381 | 387.6 | — | — |
表2 热物性参数
Table 2 Thermal property parameters
材料 | 熔化温度/℃ | 密度/(kg·m-3) | 比热容/(J·kg-1·K-1) | 热导率/(W·m-1·K-1) | 相变潜热/(J·kg-1) | 动力黏度/(Pa·s) |
---|---|---|---|---|---|---|
RT42[ | 42 | 760 | 2000 | 0.2 | 165000 | 0.0235 |
RT50[ | 50 | 760 | 2000 | 0.2 | 160000 | 0.0275 |
RT60[ | 60 | 770 | 2000 | 0.2 | 160000 | 0.02853 |
铜 | — | 8978 | 381 | 387.6 | — | — |
1 | AbdulateefA M, MatS, AbdulateefJ, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1620-1635. |
2 | AlvaG, LinY, FangG. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
3 | IbrahimN I, Al-SulaimanF A, RahmanS, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
4 | GasiaJ, MiróL, CabezaL F. Materials and system requirements of high temperature thermal energy storage systems: a review (2): Thermal conductivity enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1584-1601. |
5 | CastellA, SoléC. An overview on design methodologies for liquid–solid PCM storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 289-307. |
6 | MahdiJ M, LohrasbiS, NsoforE C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. International Journal of Heat and Mass Transfer, 2019, 137: 630-649. |
7 | DengS, NieC, JiangH, et al. Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2019, 130: 532-544. |
8 | KamkariB, GroulxD. Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles[J]. Experimental Thermal and Fluid Science, 2018, 97: 94-108. |
9 | JiC, QinZ, DubeyS, et al. Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection[J]. International Journal of Heat and Mass Transfer, 2018, 127: 255-265. |
10 | ZhengH, WangC, LiuQ, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381. |
11 | XuY, LiM J, ZhengZ J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880. |
12 | MahdiJ M, NsoforE C. Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system[J]. Journal of Energy Storage, 2018, 20: 529-541. |
13 | GorzinM, HosseiniM J, RahimiM, et al. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger[J]. Journal of Energy Storage, 2019, 22: 88-97. |
14 | MahdiJ M, NsoforE C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986. |
15 | Al-JethelahM, TasnimS H, MahmudS, et al. Nano-PCM filled energy storage system for solar-thermal applications[J]. Renewable Energy, 2018, 126: 137-155. |
16 | DasN, TakataY, KohnoM, et al. Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit[J]. International Journal of Heat and Mass Transfer, 2017, 113: 423-431. |
17 | DengS, NieC, WeiG, et al. Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube[J]. Energy and Buildings, 2019, 183: 161-173. |
18 | Al-AbidiA A, MatS, SopianK, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156. |
19 | WangP, YaoH, LanZ, et al. Numerical investigation of PCM melting process in sleeve tube with internal fins[J]. Energy Conversion and Management, 2016, 110: 428-435. |
20 | EslamnezhadH, RahimiA B. Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins[J]. Applied Thermal Engineering, 2017, 113: 813-821. |
21 | AsgharianH, BaniasadiE. A review on modeling and simulation of solar energy storage systems based on phase change materials[J]. Journal of Energy Storage, 2019, 21: 186-201. |
22 | HamzaH, HanchiN, AbouelkhayratB, et al. Location and thickness effect of two phase change materials between layers of roof on energy consumption for air-conditioned room[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021009. |
23 | MosaffaA H, Infante FerreiraC A, TalatiF, et al. Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7. |
24 | SefidanA M, SojoudiA, SahaS C, et al. Multi-layer PCM solidification in a finned triplex tube considering natural convection[J]. Applied Thermal Engineering, 2017, 123: 901-916. |
25 | ZhengZ J, XuY, LiM J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance[J]. Applied Energy, 2018, 220: 447-454. |
26 | JiC, QinZ, LowZ, et al. Non-uniform heat transfer suppression to enhance PCM melting by angled fins[J]. Applied Thermal Engineering, 2018, 129: 269-279. |
27 | ElbahjaouiR, El QarniaH, NaimiA. Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems[J]. Energy and Buildings, 2018, 168: 438-456. |
28 | PrietoM M, SuárezI, GonzálezB. Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems[J]. Applied Thermal Engineering, 2017, 116: 11-23. |
29 | 程友良, 韩健, 张金生. 相变蓄热单元蓄/放热过程的数值模拟研究[J]. 太阳能学报, 2018, (5): 1237-1244. |
ChengY L, HanJ, ZhangJ S. Numerical simulation on charge/discharge process of latent heat storage unit[J]. Acta Energiae Solaris Sinica, 2018, (5): 1237-1244. | |
30 | 陶文铨. 数值传热学 [M]. 2版. 西安: 西安交通大学出版社, 2001. |
TaoW Q. Numerical Heat Transfer [M]. 2nd ed.Xi’an: Xi’an Jiaotong University Press, 2001. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[8] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[9] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[10] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[11] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||