化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3613-3625.doi: 10.11949/0438-1157.20210255

• 催化、动力学与反应器 • 上一篇    下一篇

表面改性未焙烧TS-1固载金催化丙烯氢氧环氧化反应性能研究

张志华(),杜威,段学志(),周兴贵   

  1. 华东理工大学化学工程联合国家重点实验室,上海 200237
  • 收稿日期:2021-02-19 修回日期:2021-05-07 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 段学志 E-mail:zhihuazhangecust@126.com;xzduan@ecust.edu.cn
  • 作者简介:张志华(1989—),男,博士研究生,zhihuazhangecust@126.com
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目(21922803);上海市教委科研创新计划自然科学重大项目;国家自然科学基金重点项目(22038003)

Au nanoparticles immobilized on surface modified TS-1-B as high-efficiency bifunctional catalyst for propylene epoxidation with H2 and O2

ZHANG Zhihua(),DU Wei,DUAN Xuezhi(),ZHOU Xinggui   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2021-02-19 Revised:2021-05-07 Published:2021-07-05 Online:2021-07-05
  • Contact: DUAN Xuezhi E-mail:zhihuazhangecust@126.com;xzduan@ecust.edu.cn

摘要:

采用四丙基氢氧化铵(TPAOH)溶液对未焙烧钛硅分子筛TS-1(TS-1-B)进行二次晶化改性,以尿素为沉淀剂通过沉积-沉淀法制备改性和非改性的TS-1-B固载Au纳米催化剂,对比研究这两种催化剂丙烯氢氧环氧化反应性能的差异,阐明二次晶化改性对TS-1-B表面结构及催化行为的影响。结果表明:二次晶化改性提高了TS-1-B结晶度,降低了缺陷位硅羟基数量;改性的TS-1-B表面疏水性的提高有助于抑制产物环氧丙烷(PO)在羟基位点上吸附,其固载的金催化剂表现出显著提高的稳定性和活性。此外,对该催化剂的动力学行为也进行了研究,并计算了主/副产物生成活化能。

关键词: 催化, 环氧丙烷, 丙烯环氧化, 稳定性, 改性, 动力学

Abstract:

Developing highly efficient stable Au-Ti bifunctional catalysts is scientific and technological challenge for direct propylene epoxidation with H2 and O2. This work describes a novel strategy of employing tetrapropylammonium hydroxide (TPAOH) to modify uncalcined titanium silicalite-1 (TS-1-B) by secondary crystallization. Urea is used as the precipitation agent to immobilize gold nanoparticles onto the modified TS-1-B by deposition-precipitation method, aiming at allowing high gold capture efficiency as well as avoiding the introduction of residual alkaline cations to the catalyst. Compared with the reference Au/TS-1-B catalyst, the nano-gold particles immobilized on the modified TS-1 delivers significantly enhanced stability (> 36 h), propylene oxide (PO) formation rate (about 120 g/(h·kg)), PO selectivity (about 92.1%) and hydrogen efficiency (about 33.3%). The Fourier transform infrared spectroscopy (FT-IR) spectra demonstrates that the strength of the hydrogen-bonded silanols and trapped water in the TS-1-B decreased remarkably after secondary crystallization, indicating that the hydrophobic of TS-1-B is increased, which can be responsible for the improved stability and activity of the modified TS-1-B immobilized nano-gold catalyst. Moreover, the analysis of kinetic characteristic demonstrates that the propylene conversion and PO formation rate increase with increasing reaction temperature, while the PO selectivity and hydrogen efficiency decrease monotonously, and the apparent activation energies of by-products are much higher than the PO, indicating that higher reaction temperature favours the formation of by-products. In addition, the kinetic behavior of the catalyst was also studied, and the activation energy for the formation of main/by-products was calculated.

Key words: catalysis, propylene oxide, propylene epoxidation, stability, modification, kinetics

中图分类号: 

  • TQ 203.2
1 宋钊宁, 冯翔, 刘熠斌, 等. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773.
Song Z N, Feng X, Liu Y B, et al. Advances in manipulation of catalyst structure and relationship of structure-performance for direct propene epoxidation with H2 and O2[J]. Progress in Chemistry, 2016, 28(12): 1762-1773.
2 Huang J H, Haruta M. Gas-phase propene epoxidation over coinage metal catalysts[J]. Research on Chemical Intermediates, 2012, 38(1): 1-24.
3 Sinha A K, Seelan S, Tsubota S, et al. Catalysis by gold nanoparticles: epoxidation of propene[J]. Topics in Catalysis, 2004, 29(3/4): 95-102.
4 Qi C X. The production of propylene oxide over nanometer Au catalysts in the presence of H2 and O2[J]. Gold Bulletin, 2008, 41(3): 224-234.
5 原宇航, 吴魏, 周兴贵, 等. 金催化剂在丙烯气相直接环氧化反应中的应用[J]. 化学反应工程与工艺, 2005, 21(4): 353-359.
Yuan Y H, Wu W, Zhou X G, et al. Application of gold supported catalysts in gas-phase direct epoxidation of propylene[J]. Chemical Reaction Engineering and Technology, 2005, 21(4): 353-359.
6 Uphade B S, Tsubota S, Hayashi T, et al. Selective oxidation of propylene to propylene oxide or propionaldehyde over Au supported on titanosilicates in the presence of H2 and O2[J]. Chemistry Letters, 1998, 27(12): 1277-1278.
7 Bravo-Suárez J J, Bando K K, Lu J Q, et al. Transient technique for identification of true reaction intermediates:   hydroperoxide species in propylene epoxidation on gold/titanosilicate catalysts by X-ray absorption fine structure spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(4): 1115-1123.
8 Chowdhury B, Bravo-Suárez J J, Mimura N, et al. In situ UV-Vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 catalyst[J]. The Journal of Physical Chemistry B, 2006, 110(46): 22995-22999.
9 Lu J Q, Zhang X M, Bravo-Suárez J J, et al. Kinetics of propylene epoxidation using H2 and O2 over a gold/mesoporous titanosilicate catalyst[J]. Catalysis Today, 2007, 123(1/2/3/4): 189-197.
10 Yap N, Andres R P, Delgass W N. Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2[J]. Journal of Catalysis, 2004, 226(1): 156-170.
11 Sinha A K, Seelan S, Akita T, et al. Vapor-phase epoxidation of propene over Au/Ti-MCM-41 catalysts: influence of Ti content and Au content[J]. Catalysis Letters, 2003, 85(3/4): 223-228.
12 Sacaliuc-Parvulescu E, Friedrich H, Palkovits R, et al. Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene[J]. Journal of Catalysis, 2008, 259(1): 43-53.
13 Uphade B S, Akita T, Nakamura T, et al. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48[J]. Journal of Catalysis, 2002, 209(2): 331-340.
14 Lu J Q, Zhang X M, Bravo-Suárez J J, et al. Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2: effect of Au particle size[J]. Journal of Catalysis, 2007, 250(2): 350-359.
15 Sinha A K, Seelan S, Tsubota S, et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion[J]. Angewandte Chemie International Edition, 2004, 43(12): 1546-1548.
16 Jin F, Wu Y X, Liu S W, et al. Effect of Ti incorporated MWW supports on Au loading and catalytic performance for direct propylene epoxidation[J]. Catalysis Today, 2016, 264: 98-108.
17 Lee W S, Cem Akatay M, Stach E A, et al. Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene[J]. Journal of Catalysis, 2012, 287: 178-189.
18 Feng X, Duan X Z, Qian G, et al. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2[J]. Applied Catalysis B: Environmental, 2014, 150/151: 396-401.
19 Wu L Z, Zhao S F, Lin L F, et al. In-depth understanding of acid catalysis of solvolysis of propene oxide over titanosilicates and titanosilicate/H2O2 systems[J]. Journal of Catalysis, 2016, 337: 248-259.
20 Mul G, Zwijnenburg A, van der Linden B, et al. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: an in situ FT-IR study[J]. Journal of Catalysis, 2001, 201(1): 128-137.
21 Chowdhury B, Bravo-Suárez J J, Daté M, et al. Trimethylamine as a gas-phase promoter: highly efficient epoxidation of propylene over supported gold catalysts[J]. Angewandte Chemie International Edition, 2006, 45(3): 412-415.
22 Sinha A K, Seelan S, Akita T, et al. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes[J]. Applied Catalysis A: General, 2003, 240(1/2): 243-252.
23 Liu Y W, Zhang X M, Suo J S. Gold supported on nitrogen-incorporated TS-1 for gas-phase epoxidation of propylene[J]. Chinese Journal of Catalysis, 2013, 34(2): 336-340.
24 Lee W S, Cem Akatay M, Stach E A, et al. Enhanced reaction rate for gas-phase epoxidation of propylene using H2 and O2 by Cs promotion of Au/TS-1[J]. Journal of Catalysis, 2013, 308: 98-113.
25 Lu X N, Zhao G F, Lu Y. Propylene epoxidation with O2 and H2: a high-performance Au/TS-1 catalyst prepared via a deposition-precipitation method using urea[J]. Catalysis Science & Technology, 2013, 3(11): 2906-2909.
26 Song W C, Zuo Y, Xiong G, et al. Transformation of SiO2 in titanium silicalite-1/SiO2 extrudates during tetrapropylammonium hydroxide treatment and improvement of catalytic properties for propylene epoxidation[J]. Chemical Engineering Journal, 2014, 253: 464-471.
27 Wu L Z, Deng X J, Zhao S F, et al. Synthesis of a highly active oxidation catalyst with improved distribution of titanium coordination states[J]. Chemical Communications, 2016, 52(56): 8679-8682.
28 Wang J, Chen Z, Yu Y, et al. Hollow core–shell structured TS-1@S-1 as an efficient catalyst for alkene epoxidation[J]. RSC Advances, 2019, 9(65): 37801-37808.
29 Xu H, Tian W W, Xu L P, et al. Crossed intergrowth triggered TS-2 microsphere: formation mechanism, modification and catalytic performance[J]. Chinese Journal of Catalysis, 2020, 41(7): 1109-1117.
30 Zhang Z H, Zhao X, Wang G, et al. Uncalcined TS-2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H2 and O2[J]. AIChE Journal, 2020, 66(2): e16815.
31 Feng X, Duan X Z, Yang J, et al. Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: effects of Si/Ti molar ratio and Au loading[J]. Chemical Engineering Journal, 2015, 278: 234-239.
32 Zhan G W, Du M M, Sun D H, et al. Vapor-phase propylene epoxidation with H2/O2 over bioreduction Au/TS-1 catalysts: synthesis, characterization, and optimization[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9019-9026.
33 Feng X, Sheng N, Liu Y B, et al. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1[J]. ACS Catalysis, 2017, 7(4): 2668-2675.
34 Qi C X, Akita T, Okumura M, et al. Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature[J]. Applied Catalysis A: General, 2003, 253(1): 75-89.
35 Kanungo S, Keshri K S, Hensen E J M, et al. Direct epoxidation of propene on silylated Au-Ti catalysts: a study on silylation procedures and the effect on propane formation[J]. Catalysis Science & Technology, 2018, 8(12): 3052-3059.
36 Kanungo S, Keshri K S, van Hoof A J F, et al. Silylation enhances the performance of Au/Ti-SiO2 catalysts in direct epoxidation of propene using H2 and O2[J]. Journal of Catalysis, 2016, 344: 434-444.
37 Sheng N, Liu Z K, Song Z N, et al. Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst[J]. Chemical Engineering Journal, 2019, 377: 119954.
38 Lu J Q, Zhang X M, Bravo-Suárez J J, et al. Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2[J]. Catalysis Today, 2009, 147(3/4): 186-195.
39 Nijhuis T A, Visser T, Weckhuysen B M. The role of gold in gold-titania epoxidation catalysts[J]. Angewandte Chemie, 2005, 117(7): 1139-1142.
40 Wang G, Cao Y Q, Zhang Z H, et al. Surface engineering and kinetics behaviors of Au/uncalcined TS-1 catalysts for propylene epoxidation with H2 and O2[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17300-17307.
41 Du M M, Huang J L, Sun D H, et al. Propylene epoxidation over biogenic Au/TS-1 catalysts by Cinnamomum camphora extract in the presence of H2 and O2[J]. Applied Surface Science, 2016, 366: 292-298.
42 Feng X, Chen D, Zhou X G. Thermal stability of TPA template and size-dependent selectivity of uncalcined TS-1 supported Au catalyst for propene epoxidation with H2 and O2[J]. RSC Advances, 2016, 6(50): 44050-44056.
43 Lee W S, Cem Akatay M, Stach E A, et al. Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1[J]. Journal of Catalysis, 2014, 313: 104-112.
[1] 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6.
[2] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[3] 王佳星, 赵家睿, 李斯特, 付媛, 刘凤杰, 韦昌. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318-325.
[4] 邹慧明, 王英琳, 李旋, 唐明生, 田长青. R290直线压缩机变工况制冷性能[J]. 化工学报, 2021, 72(S1): 342-347.
[5] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[6] 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412.
[7] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[8] 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493.
[9] 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69.
[10] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
[11] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[12] 梁家豪, 张国强, 高源, 尹娇, 郑华艳, 李忠. 介孔构建对CuY甲醇氧化羰基化反应活性的影响[J]. 化工学报, 2021, 72(9): 4685-4697.
[13] 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707.
[14] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[15] 王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡志华, 杨燕华, 刘磊, 周芳德. 垂直上升管内有水平柱体时气液两相局部流型转变的研究[J]. CIESC Journal, 2006, 14(4): 442 -449 .
[2] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[3] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[4] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[5] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[6] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[7] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[8] 赵锁奇, 许志明, 王仁安. 超临界流体萃取制备脱沥青油与沥青微粒[J]. CIESC Journal, 2003, 11(6): 691 -695 .
[9] 周立芳, 邵之江. 具有软硬约束的混合权系数最小二乘稳定预测控制算法[J]. CIESC Journal, 2003, 11(5): 565 -570 .
[10] 曹维良, 王泽, 张敬畅. 影响纳米碳酸钙制备过程的因素分析[J]. CIESC Journal, 2003, 11(5): 589 -593 .