化工学报 ›› 2016, Vol. 67 ›› Issue (2): 504-511.doi: 10.11949/j.issn.0438-1157.20151056

• 流体力学与传递现象 • 上一篇    下一篇

十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测

张沁丹, 付涛涛, 朱春英, 马友光   

  1. 天津大学化工学院, 化学工程联合国家重点实验室, 天津化学化工协同创新中心, 天津 300072
  • 收稿日期:2015-07-06 修回日期:2015-08-07 出版日期:2016-02-05 发布日期:2016-02-05
  • 通讯作者: 马友光 E-mail:ygma@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(21276175,21106093,91434204);天津市自然科学基金项目(13JCQNJC05500)。

Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel

ZHANG Qindan, FU Taotao, ZHU Chunying, MA Youguang   

  1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
  • Received:2015-07-06 Revised:2015-08-07 Online:2016-02-05 Published:2016-02-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21276175, 21106093, 91434204) and the Natural Science Foundation of Tianjin(13JCQNJC05500).

摘要:

利用高速摄像仪对十字聚焦微通道内液滴在黏弹性流体中的生成过程进行了实验研究。微通道截面为600μm×600 μm 的正方形结构,采用硅油作为分散相,含0.3%表面活性剂十二烷基硫酸钠(SDS)的聚环氧乙烷(PEO)水溶液(质量分数分别为0.1%,0.3%,0.6%)为连续相。实验观察到了弹状流、滴状流和喷射流3 种流型。对弹状流型下液滴生成过程的颈部动力学进行了研究,考察了两相流率、连续相毛细数及弹性数对液滴尺寸的影响。结果表明:弹状液滴尺寸随连续相流率、毛细数及弹性数的增加而减小,随分散相流率的增加而增加,连续相弹性对液滴尺寸的影响相对较小。以油水两相流率比和连续相的毛细数及Reynolds 数为变量建立了弹状液滴尺寸的预测关联式,预测值与实验值吻合良好。

关键词: 微通道, 两相流, 流体动力学, 液滴, 黏弹性, 尺寸预测

Abstract:

A high-speed camera was utilized to observe the formation of the droplet in viscoelastic fluid in flow-focusing microchannel. The microchannel with a square section of 600 μm×600 μm was used in the experiment. Silicone oil and polyethylene oxide (PEO) solution (0.1%,0.3%,0.6%) with 0.3% surfactant sodium dodecyl sulfate (SDS) were used as dispersed and continuous phases, respectively. Three flow patterns were observed: slug flow, dripping flow and jetting flow. The transition lines for different flow patterns were obtained. The dynamics of breakup for slug droplets was studied. The effects of two-phase flow rates, capillary number and elasticity number of the continuous phase on the size of slug droplet were investigated experimentally. The results indicated that the size of slug droplet decreased with increasing flow rate, capillary number and elasticity number of the continuous phase, but it increased with increasing flow rate of the dispersed phase. The impact of the elasticity of the continuous phase on slug droplet size was relatively small. The correlations for predicting the size of slug droplet were proposed by taking the ratio of two-phase flow rates, and the capillary number and Reynolds number of the continuous phase into account. The prediction result agreed well with the experimental data.

Key words: microchannels, two-phase flow, hydrodynamics, droplet, viscoelasticity, size prediction

中图分类号: 

  • TQ021.4
[1] 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4):427-439. DOI:10.3321/j.issn:0438-1157.2003.04.004. CHEN G W, YUAN Q. Micro chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4):427-439. DOI:10.3321/j.issn:0438-1157.2003.04.004.
[2] ZHAO C X, MIDDELBERG A P J. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7):1394-1411.
[3] DREYFUS R, TABELING P, WILLAIME H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Physical Review Letters, 2003, 90(14):144505.
[4] FU T T, MA Y G, LI H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5):1920-1929.
[5] CUBAUD T, MASON T G. Capillary threads and viscous droplets in square microchannels[J]. Physics of Fluids, 2008, 20(5):053302.
[6] FU T T, WU Y N, MA Y G, et al. Droplet formation and breakup dynamics in microfluidic flow-focusing devices:from dripping to jetting[J]. Chemical Engineering Science, 2012, 84:207-217.
[7] LIU H, ZHANG Y. Droplet formation in microfluidic cross-junctions[J]. Physics of Fluids, 2011, 23(8):082101.
[8] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721):537-541.
[9] ZHAO C X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12):1420-1446.
[10] HUEBNER A, SHARMA S, SRISA-ART M, et al. Microdroplets:a sea of applications?[J]. Lab on a Chip, 2008, 8(8):1244-1254.
[11] FU T T, MA Y G, FUNFSCHILLING D, et al. Breakup dynamics of slender bubbles in non-Newtonian fluids in microfluidic flowfocusing devices[J]. AIChE Journal, 2012, 58(11):3560-3567.
[12] STEINHAUS B, SHEN A Q, SURESHKUMAR R. Dynamics of viscoelastic fluid filaments in microfluidic devices[J]. Physics of Fluids, 2007, 19(7):073103.
[13] LEE W, WALKER L M, ANNA S L. Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics[J]. Macromolecular Materials and Engineering, 2011, 296(3/4):203-213.
[14] BYRON B R, CARREAU P J. A nonlinear viscoelastic model for polymer solutions and melts-Ⅰ[J]. Chemical Engineering Science, 1968, 23(5):427-434.
[15] DEL GIUDICE F, D'AVINO G, GRECO F, et al. Effect of fluid rheology on particle migration in a square-shaped microchannel[J]. Microfluidics and Nanofluidics, 2015, 19(1):95-104.
[16] REN Y, LIU Z, SHUM H C. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem[J]. Lab on a Chip, 2015, 15(1):121-134.
[17] FU T T, FUNFSCHILLING D, MA Y G, et al. Scaling the formation of slug bubbles in microfluidic flow-focusing devices[J]. Microfluidics and Nanofluidics, 2010, 8(4):467-475.
[18] FU T T, MA Y G, FUNFSCHILLING D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10):2392-2400.
[19] DOLLET B, VAN HOEVE W, RAVEN J-P, et al. Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J]. Physical Review Letters, 2008, 100(3):034504.
[20] TIRTAATMADJA V, MCKINLEY G H, COOPER-WHITE J J. Drop formation and breakup of low viscosity elastic fluids:effects of molecular weight and concentration[J]. Physics of Fluids, 2006, 18(4):043101.
[21] THORSEN T, ROBERTS R W, ARNOLD F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18):4163-4166.
[22] GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3):437-446.
[1] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[2] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[3] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[4] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[5] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[6] 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481.
[7] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
[8] 刘璐, 丁国良, 庄大伟, 杨艺菲, 杜心远. 微通道换热器百叶窗翅片排水性能的CFD模拟[J]. 化工学报, 2021, 72(S1): 91-97.
[9] 王兆奇, 李孟山, 胡海涛, 魏文建. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119.
[10] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[11] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[12] 许峻, 王智峰, 侯凯军, 高永福, 范怡平, 卢春喜. 双层喷嘴进料提升管内气固流动混合特性的大型冷模实验研究[J]. 化工学报, 2021, 72(8): 4019-4029.
[13] 姜洪鹏, 白敏丽, 高栋栋, 高林松, 吕继组. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103.
[14] 任辉, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266.
[15] 林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[2] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[3] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[4] 高习群, 马友光, 朱春英, 余国琮. 单泡吸收过程的界面传质机理[J]. CIESC Journal, 2006, 14(2): 158 -163 .
[5] 王淑梅, 于养信, 高光华. 气体透过碳膜的非平衡动力学模拟研究
[J]. CIESC Journal, 2006, 14(2): 164 -170 .
[6] 马永锡, 张红. 基于中心复合设计的振荡热管传热性能分析
[J]. CIESC Journal, 2006, 14(2): 223 -228 .
[7] 周笑鹏, 史清洪, 邢新会, 孙彦. 快速纯化在大肠杆菌中表达的增强型绿色荧光蛋白
[J]. CIESC Journal, 2006, 14(2): 229 -234 .
[8] 毛立新, 高翔, 张猛响, 金日光. 两步共混工艺制备聚碳酸酯/聚丙烯/针状硅酸盐三元纳米复合材料:降解与形态[J]. CIESC Journal, 2006, 14(2): 248 -252 .
[9] 王小芳, 金保升, 熊源泉, 钟文琪. Flow Behaviors of Gas-Solid Injector by 3D Simulation with Kinetic Theory of Granular Flow[J]. Chinese Journal of Chemical Engineering, 2008, 16(6): 823 -831 .
[10] Mansooreh Soleimani, Tahereh Kaghazchi. Activated Hard Shell of Apricot Stones: A Promising Adsorbent in Gold Recovery[J]. CIESC Journal, 2008, 16(1): 112 -118 .