化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 310-317.doi: 10.11949/0438-1157.20201399

• 流体力学与传递现象 • 上一篇    下一篇

圆管束中导流器对其自然对流换热的影响

王玲玥1(),朱进容1,2(),王从乐1,吕辉1,2,成纯富1,2,张金业1,2   

  1. 1.湖北工业大学理学院,湖北 武汉 430068
    2.湖北工业大学,湖北省能源光电器件与系统工程技术研究中心,湖北 武汉 430068
  • 收稿日期:2020-10-09 修回日期:2020-10-29 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 朱进容 E-mail:lingyue_wang@sina.com;jinrzhu@sina.com
  • 作者简介:王玲玥(1996—),女,硕士研究生,lingyue_wang@sina.com
  • 基金资助:
    国家自然科学基金项目(61475044);湖北省高校优秀中青年科技创新团队项目(T201907)

Influence of diverter in cylinder array on its natural convection heat transfer

WANG Lingyue1(),ZHU Jinrong1,2(),WANG Congle1,LYU Hui1,2,CHENG Chunfu1,2,ZHANG Jinye1,2   

  1. 1.School of Science, Hubei University of Technology, Wuhan 430068, Hubei, China
    2.Hubei Engineering Technology Research Center of Energy Photoelectric Device and System, Hubei University of Technology, Wuhan 430068, Hubei, China
  • Received:2020-10-09 Revised:2020-10-29 Published:2021-06-20 Online:2021-06-20
  • Contact: ZHU Jinrong E-mail:lingyue_wang@sina.com;jinrzhu@sina.com

摘要:

对无限大空间中5根同规格圆管组成的圆管束在管间放置导流器的自然对流换热进行了数值模拟研究。考虑了Ra在103~104范围内,导流器偏转角为0°~60°,圆管间距为2~4倍圆管直径的自然对流换热,分析了5根圆管的局部Nusselt数(Nuloc)和平均Nusselt数(Nuave)。研究结果表明,导流器对管束结构的自然对流换热影响体现在两方面:一是对导流器下方圆管而言相当于障碍物削弱其换热,二是对导流器上方圆管而言隔绝了下方羽状流的影响,从而增强系统的整体换热。在圆管间距较大时,与无导流器的圆管束相比,C1~C4各圆管换热下降趋势明显放缓,并且从C4、C5圆管换热趋势上升,系统整体换热增强。圆管间距S=2DRa=103,导流器主要起障碍物的作用,削弱C1~C4各圆管换热,导致系统整体换热下降。当导流器偏转角度为45°时系统换热达到最大值,较无导流器时换热最多有着21%的提升。

关键词: 圆管, 导流器, 传热, 自然对流, 数值模拟

Abstract:

For an array composed of 5 cylinders of the same specification in an infinite space, the natural convection heat transfer of diverters placed between the cylinders is numerically simulated. Considering the difference between the natural convection heat transfer when Ra is in the range of 103—104, the diverter's deflection angle is from 0° to 60°, and the cylinder spacing is from 2 to 4 cylinder diameters. The analysis of the local Nusselt number (Nuloc) and the average Nusselt number (Nuave) of 5 cylinders shows that the natural convection heat transfer of the diverter to the array is reflected in two aspects. First, it is equivalent to an obstacle for the cylinders under the diverter to reduce the heat transfer, the second is to isolate the plume flow from the bottom of the cylinder above the diverter, thereby increasing the overall heat transfer of the array. In the case of large cylinder spacing, compared with the cylinder array without diverter, the heat transfer trend of C1—C4 cylinders has slowed down significantly, and the heat transfer trend of C4,C5 cylinders has increased, and the overall heat exchange of the system has been enhanced. The cylinder spacing S=2D, Ra=103, the diverter mainly acts as an obstacle, weakening the heat transfer of the C1—C4 cylinders, resulting in a decrease in the overall heat transfer of the array. When the diverter deflection angle is 45°, the heat transfer of the array reaches its maximum value, which is up to 21% higher than that without the diverter.

Key words: cylinder, diverter, heat transfer, natural convection, numerical simulation

中图分类号: 

  • TK 311

图1

物理模型"

图2

网格划分"

表1

不同网格数量下模拟的Nuˉ与文献[29]的对比"

网格数Nuˉ
1541849.119
2188029.813
3101669.998
4126569.994
文献[29]10.109

表2

单圆管局部Nuloc与已有结果的对比"

RaNuloc
θ=0°θ=30°θ=60°θ=90°θ=120°θ=150°θ=180°
103本文3.8223.7953.6873.5012.8941.9741.258
文献[28]3.7983.7553.6403.3762.8411.9581.210
文献[6]3.8133.7723.6403.3742.8661.9751.218
104本文6.1596.1385.8695.5614.9033.3261.577
文献[28]5.9865.9315.7565.4064.7163.2931.532
文献[6]5.9955.9355.7505.4104.7643.3081.534
105本文9.7159.6529.3188.7917.9925.8332.107
文献[28]9.6949.5959.2978.7497.8715.8481.989
文献[6]9.6759.5579.2788.7657.9465.8911.987

图3

竖排5根圆管束各圆管的Nuave的仿真结果与已有试验结果对比"

图4

导流器置于不同偏转角度时的流线"

图5

导流器置于不同偏转角度时的温度图"

图6

导流器置于不同偏转角度圆管束系统平均Nusselt数(Nuarray)和系统中各圆管Nuave"

图7

圆管间距为S=2D~4D的温度图和流线图"

图8

圆管束系统中各圆管Nuave"

图9

圆管束系统Nuarray"

1 Chung B J, Eoh J H, Heo J H. Visualization of natural convection heat transfer on horizontal cylinders [J]. Heat and Mass Transfer, 2011, 47(11): 1445-1452.
2 Seo Y M, Mun G S, Park Y G, et al. Two-dimensional flow instability induced by natural convection in a square enclosure with four inner cylinders (Ⅱ): Effect of various positions of inner cylinders [J]. International Journal of Heat and Mass Transfer, 2017, 113: 1319-1331.
3 Moreno S, Hinojosa J F, Hernández-López I, et al. Numerical and experimental study of heat transfer in a cubic cavity with a PCM in a vertical heated wall [J]. Applied Thermal Engineering, 2020, 178: 115647.
4 Ghalambaz M, Mehryan S A M, Alsabery A I, et al. Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure [J]. Meccanica, 2020, 55(8): 1561-1584.
5 张敏, 陶锴, 晏刚. 含内热源的梯形腔自然对流换热数值模拟 [J]. 化工学报, 2011, 62(6): 1543-1548.
Zhang M, Tao K, Yan G. Numerical simulation of natural convection in trapezoidal enclosures with discrete heater [J]. CIESC Journal, 2011, 62(6): 1543-1548.
6 Saitoh T, Sajiki T, Maruhara K. Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder [J]. International Journal of Heat and Mass Transfer, 1993, 36(5): 1251-1259.
7 He Z H, Zhu J R, Zhang J Y, et al. Natural convection heat transfer from a horizontal cylinder using holographic interferometry [J]. Heat Transfer — Asian Research, 2019, 48(1): 115-126.
8 石宏岩, 刘捷, 卢文强. 水平紧密接触品字形三圆管自然对流换热的数值模拟[J]. 中国科学院大学学报, 2018, 35(5): 595-601.
Shi H Y, Liu J, Lu W Q. Numerical simulation of laminar natural convection heat transfer from three horizontal attached cylinders [J]. Journal of University of Chinese Academy of Sciences, 2018, 35(5): 595-601.
9 Liu J, Liu H, Zhen Q, et al. Numerical investigation of the laminar natural convection heat transfer from two horizontally attached horizontal cylinders [J]. International Journal of Heat and Mass Transfer, 2017, 104: 517-532.
10 Ashjaee M, Yazdani S, Bigham S, et al. Experimental and numerical investigation on free convection from a horizontal cylinder located above an adiabatic surface [J]. Heat Transfer Engineering, 2012, 33(3): 213-224.
11 Kitamura K, Mitsuishi A, Suzuki T, et al. Fluid flow and heat transfer of natural convection induced around a vertical row of heated horizontal cylinders [J]. International Journal of Heat and Mass Transfer, 2016, 92: 414-429.
12 Elsherbiny S M, Teamah M A, Moussa A R. Natural convection heat transfer from an isothermal horizontal square cylinder [J]. Alexandria Engineering Journal, 2017, 56(1): 181-187.
13 朱进容, 代金梅, 程晓敏, 等. 基于全息术的水平偏置椭圆管自然对流换热[J]. 化工学报, 2016, 67(4): 1145-1149.
Zhu J R, Dai J M, Cheng X M, et al. Natural convection heat transfer from horizontal offset elliptic tube based on holographic interferometry [J]. CIESC Journal, 2016, 67(4): 1145-1149.
14 Herráez J V, Belda R. A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients [J]. International Journal of Thermal Sciences, 2002, 41(3): 261-267.
15 Ashjaee M, Yousefi T, Amiri M. Free convection heat transfer from a confined horizontal elliptic cylinder [J]. Heat Transfer Engineering, 2006, 27(10): 116-124.
16 Narayan S, Singh A K, Srivastava A. Interferometric study of natural convection heat transfer phenomena around array of heated cylinders [J]. International Journal of Heat and Mass Transfer, 2017, 109: 278-292.
17 Yousefi T, Ashjaee M. Experimental study of natural convection heat transfer from vertical array of isothermal horizontal elliptic cylinders [J]. Experimental Thermal and Fluid Science, 2007, 32(1): 240-248.
18 Naylor D, Lai B Y. Experimental study of natural convection in a window with a between-panes Venetian blind [J]. Experimental Heat Transfer, 2007, 20(1): 1-17.
19 Najafian Ashrafi Z, Ashjaee M. Temperature field measurement of an array of laminar premixed slot flame Jets using Mach-Zehnder interferometry [J]. Optics and Lasers in Engineering, 2015, 68: 194-202.
20 朱进容, 吕伟, 周怀春. 横向大剪切干涉应用于水平圆管自然对流换热 [J]. 化工学报, 2012, 63(10): 3034-3039.
Zhu J R, Lü W, Zhou H C. Natural convection heat transfer of horizontal cylinder with lateral shearing interferometry [J]. CIESC Journal, 2012, 63(10): 3034-3039.
21 Qi C B, Zheng S, Zhou H C. Experimental investigation on gas-phase temperature of axisymmetric ethylene flames by large lateral shearing interferometry [J]. International Journal of Thermal Sciences, 2017, 115: 104-111.
22 Zeitoun O, Ali M. Numerical investigation of natural convection around isothermal horizontal rectangular ducts [J]. Numerical Heat Transfer, Part A: Applications, 2006, 50(2): 189-204.
23 Khodary K, Bhattacharyya T K. Optimum natural convection from square cylinder in vertical channel [J]. International Journal of Heat and Fluid Flow, 2006, 27(1): 167-180.
24 Liao C C, Lin C A. Influences of a confined elliptic cylinder at different aspect ratios and inclinations on the laminar natural and mixed convection flows [J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6638-6650.
25 Liu J, Liu H, Zhen Q, et al. Laminar natural convection heat transfer from a pair of attached horizontal cylinders set in a vertical array [J]. Applied Thermal Engineering, 2017, 115: 1004-1019.
26 Sebastian G, Shine S R. Natural convection from horizontal heated cylinder with and without horizontal confinement [J]. International Journal of Heat and Mass Transfer, 2015, 82: 325-334.
27 de Kumar A, Dalal A. A numerical study of natural convection around a square, horizontal, heated cylinder placed in an enclosure [J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4608-4623.
28 Corcione M. Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array [J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3660-3673.
29 Ashjaee M, Yousefi T, Farahmand S, et al. Enhancement of free convection heat transfer from a vertical array of isothermal cylinders by flow diverters [J]. Heat Transfer Engineering, 2009, 30(3): 197-206.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[3] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[4] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[5] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[6] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[7] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[8] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[9] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[10] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[11] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[12] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[13] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[14] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[15] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[2] 李令莱,周东华,王友清,孙德辉. 未知办理入扩展卡尔曼滤波的收敛性分析及其非线性故障诊断[J]. CIESC Journal, 2005, 13(6): 783 -790 .
[3] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[4] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[5] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[6] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[7] 刘先桥, 官月平, 邢建民, 马志亚, 刘会洲. 带环氧基的超顺磁性高分子微球的制备及其性能表征[J]. CIESC Journal, 2003, 11(6): 731 -735 .
[8] 张光旭, 吴元欣, 马沛生, 田崎峰, 吴广文, 李定或, 王存文. 非均相羰基氧化一步合成碳酸二苯酯的研究(Ⅴ)筛选催化剂及优化合成条件[J]. CIESC Journal, 2003, 11(5): 526 -530 .
[9] 周立芳, 邵之江. 具有软硬约束的混合权系数最小二乘稳定预测控制算法[J]. CIESC Journal, 2003, 11(5): 565 -570 .
[10] 曹维良, 王泽, 张敬畅. 影响纳米碳酸钙制备过程的因素分析[J]. CIESC Journal, 2003, 11(5): 589 -593 .