化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4019-4029.doi: 10.11949/0438-1157.20201442

• 流体力学与传递现象 • 上一篇    下一篇

双层喷嘴进料提升管内气固流动混合特性的大型冷模实验研究

许峻1(),王智峰2,侯凯军2,高永福2,范怡平1(),卢春喜1   

  1. 1.中国石油大学(北京)重质油国家重点实验室,北京 102249
    2.中国石油重质油加工重点实验室,甘肃 兰州 730060
  • 收稿日期:2020-10-15 修回日期:2021-03-29 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 范怡平 E-mail:xujuncup@163.com;fanyipin2002@sina.com
  • 作者简介:许峻(1995—),男,硕士研究生,xujuncup@163.com
  • 基金资助:
    中石油重大专项催化轻馏分油组合进料技术研究

Experimental and theoretical study on gas-solid flow characteristics in feedstock injection zone of FCC riser with double-layer nozzles

Jun XU1(),Zhifeng WANG2,Kaijun HOU2,Yongfu GAO2,Yiping FAN1(),Chunxi LU1   

  1. 1.State Key Laboratory of Heavy Oil, China University of Petroleum, Beijing 102249, China
    2.Key Laboratory of Heavy Oil Processing of CNPC, Lanzhou 730060, Gansu, China
  • Received:2020-10-15 Revised:2021-03-29 Published:2021-08-05 Online:2021-08-05
  • Contact: Yiping FAN E-mail:xujuncup@163.com;fanyipin2002@sina.com

摘要:

为改善催化裂化工艺的产品分布,在传统单层向上原料喷嘴进料结构基础上,增加了2个对称、向下的“副喷嘴”。通过一套大型冷模实验装置,考察这种新型双层喷嘴进料段结构内气固流动混合特性,同时利用射流“二次流”理论,分析了逆向喷嘴射流二次流在提升管内的形成发展过程。实验结果表明,与传统单层向上喷嘴(主喷嘴)结构相比,双层喷嘴结构能够改善主喷嘴附近油剂匹配程度,提高气固接触效率。同时副喷嘴的加入可以将提升管进料段长度缩短1/3,减少油剂混合时间,加快气固相达到均匀稳定,实现抑制油气过度裂解,提高目标产品收率,降低生焦量的目的。

关键词: 催化裂化, 提升管反应器, 进料段, 双层喷嘴, 多相流, 流体动力学

Abstract:

In order to improve the product distribution of FCC process, on the basis of the traditional single-layer upward feedstock nozzle feed structure, two symmetrical and downward “sub-nozzles” have been added. The gas-solid flow characteristics of the double-layer nozzles were experimentally investigated in a large-scale cold model. The occurrence of the secondary flow of the downward nozzle jet in the riser was analyzed by using “secondary flow” theory. The results showed that, the double-layer nozzle structure can improve the matching of oil & catalyst particles and improve the gas-solid contact efficiency compared with the traditional single-layer nozzle structure. Furthermore, the secondary nozzle can shorten the mixing height of riser by 1/3, reduce the mixing time of oil & catalyst particles, accelerate the uniformity and stabilization of gas-solid phase, realize the purpose of restraining over-cracking of oil, improving the target product yield and reducing coke generation.

Key words: FCC, riser reactor, feed injection zone, double-layer nozzles, multiphase flow, hydrodynamics

中图分类号: 

  • TQ 016

图1

喷嘴向下提升管进料段气固相混合过程示意图"

图2

颗粒群运动过程示意图"

图3

气固相间动量传递模型示意图"

图4

实验装置1—罗茨鼓风机;2—缓冲罐;3—气体分配器;4—转子流量计;5—预提升段;6—up-down双层喷嘴结构;7—提升管;8—超短快分;9,10—旋风分离器;11,14—计量罐;12,15—蝶阀;13—料;16—储料伴床;17—循环斜管"

图5

三种喷嘴气速下进料段内颗粒固含率、速度和射流特征浓度的径向分布"

图6

三种喷嘴气速下进料段油、剂分布及匹配情况"

图7

双层喷嘴与传统单层向上喷嘴进料段内油剂匹配指数分布(Uj=80 m/s)"

1 卢春喜, 范怡平, 刘梦溪, 等. 催化裂化反应系统关键装备技术研究进展[J]. 石油学报(石油加工), 2018, 34(3): 441-454.
Lu C X, Fan Y P, Liu M X, et al. Advances in key equipment technologies of reaction system in RFCC unit[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(3): 441-454.
2 汪申, 时铭显. 我国催化裂化提升管反应系统设备技术的进展[J]. 石油化工动态, 2000, 8(5): 46-50.
Wang S, Shi M X. Progress of domestic FCC riser reactor technology[J]. Petrochemical Industry Trends, 2000, 8(5): 46-50.
3 王钊, 闫子涵, 范怡平, 等. 催化裂化提升管进料混合段研究进展[J]. 当代化工, 2015, 44(5): 997-1000.
Wang Z, Yan Z H, Fan Y P, et al. Research progress of feed injection-mixing zone in FCC riser[J]. Contemporary Chemical Industry, 2015, 44(5): 997-1000.
4 邓任生, 魏飞, 胡永琪, 等. 流态化及流固接触技术[J]. 现代化工, 1999, 19(12): 11-14.
Deng R S, Wei F, Hu Y Q, et al. Fluidization and fluid solids contact technique[J]. Modern Chemical Industry, 1999, 19(12): 11-14.
5 黄卫星, 漆小波, 潘永亮, 等. 气固循环床提升管内的局部颗粒浓度及流动发展[J]. 高校化学工程学报, 2002, 16(6): 626-631.
Huang W X, Qi X B, Pan Y L, et al. Local solid-particle concentration and flow development in a long CFB riser[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(6): 626-631.
6 鄂承林, 范怡平, 卢春喜, 等. 喷嘴进料对提升管进料段内颗粒浓度径向分布的影响[J]. 过程工程学报, 2008, 8(1): 18-22.
E C L, Fan Y P, Lu C X, et al. Effect of jet gas on solid hold-up profile in the feed injection section of the riser[J]. The Chinese Journal of Process Engineering, 2008, 8(1): 18-22.
7 Bai D R, Jin Y, Yu Z Q, et al. The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds[J]. Powder Technology, 1992, 71(1): 51-58.
8 鄂承林, 范怡平, 卢春喜, 等. 提升管喷嘴进料段内油、剂两相接触状况研究[J]. 高校化学工程学报, 2008, 22(3): 447-453.
E C L, Fan Y P, Lu C X, et al. Matching of the catalysts with feed jet gas in the feed injection section of FCC riser[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(3): 447-453.
9 刘丙超, 苏鲁书, 张善鹤, 等. 新型变径提升管冷模实验研究[J]. 石油炼制与化工, 2018, 49(3): 48-53.
Liu B C, Su L S, Zhang S H, et al. Cold mold study of a novel diameter-changing riser reactor[J]. Petroleum Processing and Petrochemicals, 2018, 49(3): 48-53.
10 钟孝湘, 侯拴弟, 郑茂军, 等. 抗滑落提升管反应器流体力学性能的研究[J]. 石油炼制与化工, 2000, 31(7): 45-50.
Zhong X X, Hou S D, Zheng M J, et al. Study on flow hydrodynamics of anti-down-slipping riser[J]. Petroleum Processing and Petrochemicals, 2000, 31(7): 45-50.
11 郑茂军, 侯栓弟, 钟孝湘, 等. 两种提升管反应器中颗粒速度分布的测定[J]. 石油炼制与化工, 2000, 31(2): 45-51.
Zheng M J, Hou S D, Zhong X X, et al. Determining the particle velocity distribution in FCC riser with different structure[J]. Petroleum Processing and Petrochemicals, 2000, 31(2): 45-51.
12 Mauleon J L, Demar M, Jean-Bernard S. Method for the injection of catalyst in a fluid catalytic cracking process, especially for heavy feedstocks: US4832825[P]. 1989-05-23.
13 范怡平, 叶盛, 卢春喜, 等. 提升管反应器进料混合段内气固两相流动特性(Ⅰ): 实验研究[J]. 化工学报, 2002, 53(10): 1003-1008.
Fan Y P, Ye S, Lu C X, et al. Gas-solid two phase flow in feed injection zone of FCC riser reactors (Ⅰ): Experimental research[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(10): 1003-1008.
14 范怡平, 叶盛, 卢春喜, 等. 提升管反应器进料混合段内气固两相流动特性(Ⅱ):理论分析[J]. 化工学报, 2002, 53(10): 1009-1014.
Fan Y P, Ye S, Lu C X, et al. Gas-solid two phase flow in feed injection zone of FCC riser reactors (Ⅱ): Analytical research[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(10): 1009-1014.
15 范怡平, 鄂承林, 卢春喜, 等. 矢量优化技术在FCC进料喷嘴开发中的应用(Ⅰ): “外部矢量”的优化[J]. 炼油技术与工程, 2011, 41(4): 28-33.
Fan Y P, E C L, Lu C X, et al. Application of vector-optimization in FCC feed nozzle development(Ⅰ): Optimization of external vectors[J]. Petroleum Refinery Engineering, 2011, 41(4): 28-33.
16 范怡平, 鄂承林, 卢春喜, 等. 矢量优化技术在FCC进料雾化喷嘴开发中的应用(Ⅱ): 喷嘴“内部矢量”的优化[J]. 炼油技术与工程, 2011, 41(5): 29-34.
Fan Y P, E C L, Lu C X, et al. Application of vector-optimization in FCC feed nozzle development(Ⅱ): Optimization of internal vectors[J]. Petroleum Refinery Engineering, 2011, 41(5): 29-34.
17 许峻, 范怡平, 钱筱婕, 等. 催化裂化提升管进料段喷嘴射流运动-扩散特性的分析[J]. 化工学报, 2020, 71(4): 1450-1459.
Xu J, Fan Y P, Qian X J, et al. Theoretical analysis of motion-diffusion characteristics in feed injection zone of FCC riser[J]. CIESC Journal, 2020, 71(4): 1450-1459.
18 Yan Z H, Fan Y P, Wang Z, et al. Dispersion of feed spray in a new type of FCC feed injection scheme[J]. AIChE Journal, 2016, 62(1): 46-61.
19 闫子涵, 秦小刚, 陈昇, 等. 油剂逆流接触提升管进料段固含率及颗粒速度的径向分布[J]. 过程工程学报, 2014, 14(5): 721-729.
Yan Z H, Qin X G, Chen S, et al. Radial distributions of solids hold-up and particle velocity in FCC riser feed injection zone with catalyst-feed oil countercurrent contact[J]. The Chinese Journal of Process Engineering, 2014, 14(5): 721-729.
20 边京, 赵凤静, 范怡平, 等. 油剂逆流接触FCC提升管进料段内喷嘴射流浓度的分布[J]. 高校化学工程学报, 2017, 31(6): 1276-1284.
Bian J, Zhao F J, Fan Y P, et al. Distribution of feed jet concentration in catalyst-feed countercurrent contacting injection zone of a FCC riser[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(6): 1276-1284.
21 赵凤静, 边京, 范怡平. 新型提升管进料段内压力脉动强度分布的影响因素[J]. 过程工程学报, 2018, 18(1): 69-74.
Zhao F J, Bian J, Fan Y P. Influencing factors on distribution of pressure pulsation intensity in injection zone of a novel FCC riser[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 69-74.
22 范怡平, 卢春喜. 催化裂化提升管进料段内多相流动及其结构优化[J]. 化工学报, 2018, 69(1): 249-258.
Fan Y P, Lu C X. Multiphase flow characteristics and structural optimization in feed injection zone of FCC riser[J]. CIESC Journal, 2018, 69(1): 249-258.
23 Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
24 王维, 洪坤, 鲁波娜, 等. 流态化模拟: 基于介尺度结构的多尺度CFD[J]. 化工学报, 2013, 64(1): 95-106.
Wang W, Hong K, Lu B N, et al. Fluidized bed simulation: structure-dependent multiscale CFD[J]. CIESC Journal, 2013, 64(1): 95-106.
25 刘德烈, 韩剑敏. LPC型催化裂化反应进料喷嘴工业应用评价[J]. 炼油设计, 1992, 22(2): 49-52.
Liu D L, Han J M. Evaluation on commercial application of LPC type nozzle for FCC feed[J]. Petroleum Refinery Engineering, 1992, 22(2): 49-52.
26 Zhu L Y, Fan Y P, Lu C X. Mixing of cold and hot particles in a pre-lifting scheme with two strands of catalyst inlets for FCC riser[J]. Powder Technology, 2014, 268: 126-138.
27 闫子涵, 许峻, 范怡平, 等. 喷嘴射流在气固提升管内的扩散和混合行为[J]. 过程工程学报, 2020, 20(7): 798-806.
Yan Z H, Xu J, Fan Y P, et al. Diffusion and mixing behaviors of nozzle jet in the gas-solid riser[J]. The Chinese Journal of Process Engineering, 2020, 20(7): 798-806.
28 王钊, 闫子涵, 范怡平, 等. 新型催化裂化提升管进料段内原料射流浓度分布的大型冷模实验研究[J]. 过程工程学报, 2016, 16(1): 34-40.
Wang Z, Yan Z H, Fan Y P, et al. Experimental study on distribution of feed jet gas concentration in the injection zone of a novel riser in a large scale cold mold[J]. The Chinese Journal of Process Engineering, 2016, 16(1): 34-40.
29 费广平, 李瑞军, 解东来, 等. 利用热导检测器实时检测混合气体组分含量的方法及装置[J]. 化工进展, 2009, 28(12): 2257-2260.
Fei G P, Li R J, Xie D L, et al. Method and apparatus for real-time gas concentration detection in gas mixture[J]. Chemical Industry and Engineering Progress, 2009, 28(12): 2257-2260.
30 闫子涵, 王钊, 陈昇, 等. 新型催化裂化提升管进料段油、剂两相混合特性[J]. 化工学报, 2016, 67(8): 3304-3312.
Yan Z H, Wang Z, Chen S, et al. Matching between oil and catalyst in new scheme of FCC feed injection[J]. CIESC Journal, 2016, 67(8): 3304-3312.
[1] 周闻, 鄂承林, 李永祺, 郭玉娇, 李子轩, 卢春喜. 新型多旋臂气液分离器入口旋流头的预分离特性研究[J]. 化工学报, 2021, 72(9): 4775-4785.
[2] 刘曙光, 钟文琪, 陈曦. 基于XCT的气固流化床布风板射流特征研究[J]. 化工学报, 2021, 72(9): 4553-4563.
[3] 黄正梁, 张鹏, 杨遥, 任聪静, 王靖岱, 阳永荣. 外加电场对静电流化床中颗粒运动与床层粘壁的调控机制[J]. 化工学报, 2021, 72(9): 4544-4552.
[4] 任辉, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266.
[5] 许晨怡, 叶恭然, 郭豪文, 庄园, 郭智恺, 韩晓红, 陈光明. 制冷剂R1336mzz(E)液相黏度理论与实验研究[J]. 化工学报, 2021, 72(6): 3261-3269.
[6] 魏彬, 周鑫, 王耀伟, 郭振莲, 陈小博, 刘熠斌, 杨朝合. 基于改进NSGA-Ⅱ算法的FCC分离系统多目标优化[J]. 化工学报, 2021, 72(5): 2735-2744.
[7] 彭启, 贾力, 丁艺, 张永欣, 党超, 银了飞. 受限微结构对低表面张力液滴合并弹跳的影响[J]. 化工学报, 2021, 72(4): 1920-1929.
[8] 朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122.
[9] 袁旭东,贾磊,周到,赵盼盼,吴俊峰,王汝金. 微通道临界热通量的基础理论与提升技术研究进展[J]. 化工学报, 2021, 72(4): 1796-1814.
[10] 郝仁杰, 谯敏, 黄卫星. 气-液并流通过堆叠筛板填料的脉冲流特性[J]. 化工学报, 2021, 72(3): 1314-1321.
[11] 刘浪宇, 朱春英, 马友光, 付涛涛. 微通道内表面活性剂与界面传递现象研究进展[J]. 化工学报, 2021, 72(2): 783-798.
[12] 陈光, 闫孝红. 一种模拟气液相变过程的相变模型[J]. 化工学报, 2020, 71(S2): 62-69.
[13] 韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45.
[14] 李建涛, 姚秀颖, 刘璐, 卢春喜. 气固流化床外取热器内流动和换热特性分析[J]. 化工学报, 2020, 71(7): 3031-3041.
[15] 刘学文, 李金京, 全晓军, 熊伟. 单个固体颗粒促进薄液膜破裂的格子Boltzmann研究[J]. 化工学报, 2020, 71(7): 3091-3097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤艳峰,张淑芬,杨锦宗. 在NaOH-烯丙基氯-DMSO体系中合成烯丙基蔗糖的新方法[J]. CIESC Journal, 2005, 13(6): 835 -836 .
[2] 张瑛, 窦涛, 鲍晓军, 李玉平, 李晓峰. 基于固相转化机理合成五元环沸石的新技术[J]. CIESC Journal, 2003, 11(6): 656 -659 .
[3] 祝贵兵, 彭永臻, 王淑莹, 左金龙, 王亚宜, 郭建华. 分段进水生物脱氮工艺稳态模型的开发与试验评价[J]. CIESC Journal, 2007, 15(3): 411 -417 .
[4] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[5] 周彩荣, 章亚东, 蒋登高. 1,2-环己二醇的焓和热容数据研究[J]. CIESC Journal, 2003, 11(5): 598 -600 .
[6] 胡国勤, 陈鸿雁, 蔡建国, 邓修. 用含夹带剂丙酮的超临界CO2快速膨胀法制备灰黄霉素的微细颗粒[J]. CIESC Journal, 2003, 11(4): 403 -407 .
[7] 刘国柱, 吴玉龙, 任永利, 米镇涛. 丙烯在仲丁醇-水溶液中溶解度的测定与关联[J]. CIESC Journal, 2003, 11(4): 452 -455 .
[8] 徐冬梅, 胡仰栋, 华贲, 王修林. 含再生再利用的用水系统的最小新鲜水和相应的再生水用量的确定[J]. CIESC Journal, 2003, 11(3): 257 -263 .
[9] 娄文勇, 宗敏华, 范晓丹. 水/有机溶剂双相中固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原[J]. CIESC Journal, 2003, 11(2): 136 -140 .
[10] 李天成, 姜斌, 冯霞, 王大为, 袁绍军, 李鑫钢. 微电解-生物膜复合工艺净化含重金属离子的有机废水[J]. CIESC Journal, 2003, 11(2): 146 -150 .