1 |
Adsul M G, Singhvi M S, Gaikaiwari S A, et al. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(6): 4304-4312.
|
2 |
覃伟中, 李强, 朱兵, 等. 生物炼制与石油炼制一体化——促进我国生物质能源发展的有效对策[J]. 化工学报, 2010, 61(7): 65-70.
|
|
Qin W Z, Li Q, Zhu B, et al. Integration of biorefinery and oil refinery: an effective way of promoting development of biomass energy in China[J]. CIESC Journal, 2010, 61(7): 65-70.
|
3 |
Yang Y, Zhang P, Zhang W, et al. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China[J]. Renewable & Sustainable Energy Reviews, 2010, 14(9): 3050-3058.
|
4 |
Lange J P. Lignocellulose conversion: an introduction to chemistry, process and economics[J]. Biofuels Bioproducts & Biorefining, 2010, 1(1): 39-48.
|
5 |
朱锡锋. 生物质热解液化技术研究与发展趋势[J]. 新能源进展, 2013, 1(1): 32-37.
|
|
Zhu X F. Research development of biomass fast pyrolysis[J]. Advances in New and Renewable Energy, 2013, 1(1): 32-37.
|
6 |
Laskar D D, Yang B, Wang H, et al. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuels Bioproducts & Biorefining, 2013, 7(5): 602-626.
|
7 |
Vanholme B, Desmet T, Ronsse F, et al. Towards a carbon-negative sustainable bio-based economy[J]. Front Plant Sci., 2013, 4: 1-17.
|
8 |
王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8): 276-282.
|
|
Wang Y, Shao S S, Zhang H Y, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 276-282.
|
9 |
张秀霞, 周志军, 周俊虎, 等. 含氮焦炭异相还原NO反应机理的密度泛函理论研究[J]. 化工学报, 2011, 62(4): 166-172.
|
|
Zhang X X, Zhou Z J, Zhou J H, et al. Density functional theoretical study of heterogeneous reduction mechanism of NO on nitrogen-containing char surface[J]. CIESC Journal, 2011, 62(4): 166-172.
|
10 |
Tsubouchi N, Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N formation[J]. Fuel, 2002, 81(18): 2335-2342.
|
11 |
赵聪, 阎志中, 杨颂, 等. 煤热解过程中氮元素迁移规律影响因素[J]. 应用化工, 2018, 47(4): 208-211.
|
|
Zhao C, Yan Z Z, Yang S, et al. Affecting the migration of nitrogen elements during coal pyrolgsis[J]. Applied Chemical Industry, 2018, 47(4): 208-211.
|
12 |
赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响[J]. 化工学报, 2003, 54(1): 100-106.
|
|
Zhao Z B, Li W, Li B Q. Effect of mineral matter on release of no during coal char combustion[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(1): 100-106.
|
13 |
Chen W, Yang H, Chen Y, et al. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis[J]. Environmental Science and Technology, 2017, 51(11), 6570-6579.
|
14 |
Chen H, Si Y, Chen Y, et al. NOx precursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375.
|
15 |
Ren Q, Zhao C, Chen X, et al. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: co-pyrolysis of amino acids and cellulose, hemicellulose and lignin[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1715-1722.
|
16 |
黎新. 谷氨酸热分解机理的研究[J]. 西南师范大学学报(自然科学版), 1999, 24(4): 438-442.
|
|
Li X. Studies on thermolytic mechanism of glutamic acid[J].Journal of Southwest China Normal University (Natural Science Edition), 1999, 24(4): 438-442.
|
17 |
Li J, Liu Y, Shi J, et al. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR[J]. Thermochimica Acta, 2007, 467(1): 20-29.
|
18 |
郝菊芳, 郭吉兆, 谢复炜, 等. 葡萄糖对天冬酰胺裂解生成氢氰酸的影响机理[J]. 烟草科技, 2014, 58(1): 34-39.
|
|
Hao J F, Guo J Z, Xie F W, et al. Influence mechanism of glucose on formation of hydrogen cyanide from asparagine pyrolysis[J]. Tobacco Chemistry, 2014, 58(1): 34-39.
|
19 |
Hao J, Guo J, Xie F, et al. Correlation of hydrogen cyanide formation with 2, 5-diketopiperazine and nitrogen heterocyclic compounds from co-pyrolysis of glycine and glucose/fructose[J]. Energy & Fuels, 2013, 27(8): 4723-4728.
|
20 |
Bao X, Chen Z, Xie H. Density functional study on the mechanism of amadori rearrangement reaction[J]. Chinese Journal of Structral Chemistry, 2011, 30(6): 827-832.
|
21 |
Rozenberg M, Shoham G, Reva I, et al. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides[J]. Physical Chemistry Chemical Physics, 2005, 7(11): 2376-83.
|
22 |
Shipar M A H. DFT studies on fructose and glycine maillard reaction: formation of the heyns rearrangement products in the initial stage[J]. Journal of the Iranian Chemical Society, 2011, 8(2): 433-448.
|
23 |
Solís-Calero C, Ortega-Castro J, Hernández-Laguna A, et al. A DFT study of the Amadori rearrangement above a phosphatidylethanolamine surface: comparison to reactions in aqueous environment[J]. The Journal of Physical Chemistry C, 2013, 117(16): 8299-8309.
|
24 |
龚千代, 刘亮, 田红, 等. 甘氨酸高温热解含氮产物生成机理及实验研究[J]. 西北大学学报(自然科学版), 2016, (5): 695-701.
|
|
Gong Q D, Liu L, Tian H, et al. Theoretic and experiment study on nitrogen-containing products of glycine during high temperature pyrolysis[J]. Journal of Northwest University(Natural Science Edition), 2016, (5): 695-701.
|
25 |
Wang S, Guo X, Liang T, et al. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresource Technology, 2012, 104: 722-728.
|
26 |
Zhang X, Li J, Yang W, et al. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis[J]. Energy & Fuels, 2011, 25(8): 3739-3746.
|
27 |
Kang P, Qin W, Fu Z Q, et al. Generation mechanism of NOx and N2O precursors (NH3 and HCN) from aspartic acid pyrolysis: a DFT study[J]. International Journal of Agricultual and Biological Engineering, 2016, 5(9): 166-176.
|
28 |
Chen H, Si Y, Chen Y, et al. NOx precursors from biomass pyrolysis: distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375.
|
29 |
Frisch M J, Trucks G W, Schlegel H B,et al. Gaussian 09: Revision D01[CP]. Wallingford CT: Gaussian, Inc., 2013.
|
30 |
Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. Journal of Chemical Physics, 1989, 90(4): 2154-2161.
|
31 |
Choi S S, Ko J E. Analysis of cyclic pyrolysis products formed from amino acid monomer[J]. Journal of Chromatography A, 2011, 1218(46): 8443-8455.
|
32 |
Kibet J K, Khachatryan L, Dellinger B. Molecular products from the thermal degradation of glutamic acid[J]. J. Agric. Food Chem., 2013, 61(32): 7696-7704.
|
33 |
Wu H, Reeves-Mclaren N, Jones S, et al. Phase transformations of glutamic acid and its decomposition products[J]. Crystal Growth & Design, 2009, 10(2): 988-994.
|
34 |
Britt P F, Buchanan A C, Owens Jr C V, et al. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline?[J]. Fuel, 2004, 83(11/12): 1417-1432.
|
35 |
Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling (Part 4): The pyrolysis of D-glucose: the formation of furans[J]. Journal of Analytical & Applied Pyrolysis, 2008, 82(1): 10-41.
|
36 |
Zhang M H, Geng Z F, Yu Y Z. Density functional theory (DFT) study on the pyrolysis of cellulose: the pyran ring breaking mechanism[J]. Computational & Theoretical Chemistry, 2015, 1067: 13-23.
|
37 |
Hu B, Lu Q, Jiang X Y, et al. Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. Journal of Energy Chemistry, 2018, 27(2): 486-501.
|
38 |
Wang S, Liu B, Su Q. Pyrolysis-gas chromatography/mass spectrometry as a useful technique to evaluate the pyrolysis pathways of phenylalanine[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(1): 393-403.
|
39 |
Hodge J E. Dehydrated foods, chemistry of browning reactions in model systems[J]. Journal of Agricultural and Food Chemistry, 1953, 1(15): 625-651.
|
40 |
Chen H P, Xie Y P, Chen W, al et, Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 196: 320-329.
|
41 |
Sharma R K, Chan W G, Hajaligol M R. Product compositions from pyrolysis of some aliphatic α-amino acids[J]. Journal of Analytical and Applied Pyrolysis, 2006, 75(2): 69-81.
|
42 |
Ren Q, Zhao C. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid[J]. Environmental Science & Technology, 2012, 46(7): 4236-4240.
|
43 |
朱文辉, 杨柳, 杨红燕, 等. TG-SPME-GC-MS研究谷氨酸和葡萄糖的固相美拉德反应[J]. 食品科学, 2010, (11): 98-103.
|
|
Zhu W H, Yang L, Yang H Y, et al. Solid-phase Maillard reaction between L-ghtamic acid and glucose as determined by TG-SPME-GC-MS[J]. Food Science, 2010, (11): 98-103.
|
44 |
Xu L J, Lu Q, Yao Q, et al. Production of 5-methylfurfual or furfural via thermal-catalytic conversion of fructose with pyrolytic solid residue-derived catalysts[J]. Chinese Science Bulletin, 2015, 60(16): 1530.
|