化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2900-2911.DOI: 10.11949/0438-1157.20200002
收稿日期:
2020-01-04
修回日期:
2020-04-07
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
范杰平
作者简介:
毛东阳(1996—),男,硕士研究生,基金资助:
Dongyang MAO(),Dan YANG,Jieping FAN()
Received:
2020-01-04
Revised:
2020-04-07
Online:
2020-06-05
Published:
2020-06-05
Contact:
Jieping FAN
摘要:
采用改进的Hummers法,通过冷冻干燥制备了氧化石墨烯(GO)。以辛弗林盐酸盐为模板分子,水溶性的丙烯酰胺为功能单体,离子液体(溴代1-丁基-3-甲基咪唑)为致孔剂,把GO加入聚合液中,制备了GO杂化的分子印迹复合膜(GO-MIM)。利用透射电镜、扫描电镜、X射线衍射和红外光谱等方法对GO及GO-MIM进行了表征。通过将分子印迹膜技术与GO相结合,明显提高了分子印迹膜的力学性能。吸附及渗透实验表明,GO-MIM可在纯水溶剂体系,对辛弗林盐酸盐具有很好的选择性吸附能力和优先透过能力,体现了明显的分子印迹效果。
中图分类号:
毛东阳, 杨丹, 范杰平. 氧化石墨烯杂化分子印迹复合膜制备及性能研究[J]. 化工学报, 2020, 71(6): 2900-2911.
Dongyang MAO, Dan YANG, Jieping FAN. Preparation and properties of graphene oxide hybrid molecularly imprinted composite membranes[J]. CIESC Journal, 2020, 71(6): 2900-2911.
Membrane | 一级动力学模型 | 二级动力学模型 | ||||
---|---|---|---|---|---|---|
Qe,cal | K1×10-2 | R2 | Qe,cal | K2×10-4 | R2 | |
GO-MIM | 200.19 | 7.125 | 0.9791 | 219.28 | 4.136 | 0.9526 |
NGO-MIM | 210.83 | 6.947 | 0.9797 | 231.52 | 3.800 | 0.9590 |
GO-NIM | 49.73 | 12.043 | 0.9692 | 49.64 | 31.849 | 0.9634 |
NGO-NIM | 53.05 | 13.122 | 0.9652 | 56.19 | 34.009 | 0.9510 |
表1 动力学方程回归参数值
Table 1 Regression parameter of kinetic equation
Membrane | 一级动力学模型 | 二级动力学模型 | ||||
---|---|---|---|---|---|---|
Qe,cal | K1×10-2 | R2 | Qe,cal | K2×10-4 | R2 | |
GO-MIM | 200.19 | 7.125 | 0.9791 | 219.28 | 4.136 | 0.9526 |
NGO-MIM | 210.83 | 6.947 | 0.9797 | 231.52 | 3.800 | 0.9590 |
GO-NIM | 49.73 | 12.043 | 0.9692 | 49.64 | 31.849 | 0.9634 |
NGO-NIM | 53.05 | 13.122 | 0.9652 | 56.19 | 34.009 | 0.9510 |
Membrane | 温度/ ℃ | Langmuir等温 吸附方程 | Freundlich等温 吸附方程 | ||||
---|---|---|---|---|---|---|---|
Qm/(μmol/g) | KL | R2 | n | KF | R2 | ||
GO-MIM | 20 | 311.17 | 4.567 | 0.9776 | 2.936 | 278.47 | 0.9560 |
30 | 293.26 | 4.175 | 0.9825 | 2.843 | 259.36 | 0.9870 | |
40 | 286.39 | 3.484 | 0.9863 | 2.634 | 239.69 | 0.9364 | |
NGO-MIM | 20 | 320.82 | 4.653 | 0.9747 | 2.911 | 269.08 | 0.9664 |
30 | 306.32 | 4.137 | 0.9808 | 2.831 | 248.054 | 0.9448 | |
40 | 291.87 | 3.630 | 0.9683 | 2.582 | 232.96 | 0.9560 |
表2 GO-MIM和NGO-MIM对辛弗林盐酸盐水溶液的Langmuir和Freundlich回归数据
Table 2 Langmuir and Freundlich regression data of GO-MIM and NGO-MIM with synephrine hydrochloride aqueous solution
Membrane | 温度/ ℃ | Langmuir等温 吸附方程 | Freundlich等温 吸附方程 | ||||
---|---|---|---|---|---|---|---|
Qm/(μmol/g) | KL | R2 | n | KF | R2 | ||
GO-MIM | 20 | 311.17 | 4.567 | 0.9776 | 2.936 | 278.47 | 0.9560 |
30 | 293.26 | 4.175 | 0.9825 | 2.843 | 259.36 | 0.9870 | |
40 | 286.39 | 3.484 | 0.9863 | 2.634 | 239.69 | 0.9364 | |
NGO-MIM | 20 | 320.82 | 4.653 | 0.9747 | 2.911 | 269.08 | 0.9664 |
30 | 306.32 | 4.137 | 0.9808 | 2.831 | 248.054 | 0.9448 | |
40 | 291.87 | 3.630 | 0.9683 | 2.582 | 232.96 | 0.9560 |
Membrane | T/℃ | ΔG°/(kJ/mol) | ΔS°/(kJ/(mol·K)) | ΔH°/(kJ/mol) |
---|---|---|---|---|
GO-MIM | 20 | -3.702 | 0.0226 | -10.37 |
30 | -3.602 | |||
40 | -3.250 | |||
NGO-MIM | 20 | -3.747 | 0.0195 | -9.47 |
30 | -3.579 | |||
40 | -3.357 |
表3 GO-MIM和NGO-MIM吸附辛弗林盐酸盐的热力学参数
Table 3 Thermodynamic parameters of synephrine hydrochloride adsorbed by GO-MIM and NGO-MIM
Membrane | T/℃ | ΔG°/(kJ/mol) | ΔS°/(kJ/(mol·K)) | ΔH°/(kJ/mol) |
---|---|---|---|---|
GO-MIM | 20 | -3.702 | 0.0226 | -10.37 |
30 | -3.602 | |||
40 | -3.250 | |||
NGO-MIM | 20 | -3.747 | 0.0195 | -9.47 |
30 | -3.579 | |||
40 | -3.357 |
图10 辛弗林盐酸盐(a)、章胺盐酸盐(b)和酪胺(c)的分子结构式
Fig.10 Molecular structural formula of synephrine hydrochloride (a), octopamine hydrochloride (b), and tyramine (c)
Membrane | Q/(μmol/g) | ||
---|---|---|---|
辛弗林盐酸盐 | 章胺盐酸盐 | 酪胺 | |
GO-MIM | 200.48 | 60.51 | 61.61 |
NGO-MIM | 206.49 | 61.38 | 60.40 |
GO-NIM | 61.09 | 58.59 | 57.27 |
NGO-NIM | 58.65 | 57.72 | 56.54 |
表4 不同底物在MIM和NIM上的吸附量
Table 4 Adsorption capacity of different substrates on MIM and NIM
Membrane | Q/(μmol/g) | ||
---|---|---|---|
辛弗林盐酸盐 | 章胺盐酸盐 | 酪胺 | |
GO-MIM | 200.48 | 60.51 | 61.61 |
NGO-MIM | 206.49 | 61.38 | 60.40 |
GO-NIM | 61.09 | 58.59 | 57.27 |
NGO-NIM | 58.65 | 57.72 | 56.54 |
图11 GO-MIM吸附前(a)、后(b)混合液的HPLC图
Fig.11 HPLC of the mixture before (a) and after (b) adsoption by GO-MIM1—synephrine hydrochloride; 2—octopamine hydrochloride; 3—tyramine
图12 供给池中初始样品HPLC图(a)、透过GO-MIM(b)和GO-NIM(c)后接收池混合溶液HPLC相图
Fig.12 HPLC chromatograms of the standard mixtures in the initial donor solution (a), receptor solutions through GO-MIM (b) and GO-NIM (c)1—synephrine hydrochloride; 2—octopamine hydrochloride; 3—tyramine
图13 三种物质的混合液透过GO-MIM和GO-NIM的时间-透过液浓度图1—辛弗林盐酸盐分子透过GO-MIM;2—酪胺分子透过GO-MIM;3—章胺盐酸盐分子透过GO-MIM;4—辛弗林盐酸盐分子透过GO-NIM;5—酪胺分子透过GO-NIM;6—章胺盐酸盐分子透过GO-NIM
Fig.13 Time-transmission of the mixtures through GO-NIM and GO-NIM
Membrane | P/(μmol/cm2) | TF | SF | |||||
---|---|---|---|---|---|---|---|---|
SYN | TYR | OTC | SYN | TYR | OTC | SF1 | SF2 | |
GO-MIM | 8.50 | 4.49 | 4.25 | 2.06 | 1.16 | 1.15 | 1.89 | 2.00 |
GO-NIM | 4.13 | 3.87 | 3.68 | 1.07 | 1.12 |
表5 三种物质通过GO-MIM和GO-NIM的相关参数
Table 5 Permeation factors of three substrates through GO-MIM and GO-NIM
Membrane | P/(μmol/cm2) | TF | SF | |||||
---|---|---|---|---|---|---|---|---|
SYN | TYR | OTC | SYN | TYR | OTC | SF1 | SF2 | |
GO-MIM | 8.50 | 4.49 | 4.25 | 2.06 | 1.16 | 1.15 | 1.89 | 2.00 |
GO-NIM | 4.13 | 3.87 | 3.68 | 1.07 | 1.12 |
1 | 谭天伟. 分子印迹技术及应用[M]. 北京: 化学工业出版社, 2010: 7. |
Tan T W. Molecular Imprinting Technology and Application[M]. Beijing: Chemical Industry Press, 2010: 7. | |
2 | Haupt K, Linares A V, Bompar M, et al. Molecularly imprinted polymers[J]. Topics in Current Chemistry, 2011, 325: 1-28. |
3 | Pan J, Chen W, Ma Y, et al. Molecularly imprinted polymers as receptor mimics for selective cell recognition[J]. Chemical Society Reviews, 2018, 47(15): 5574-5587. |
4 | Rutkowska M, Płotka-Wasylka J, Morrison C, et al. Application of molecularly imprinted polymers in analytical chiral separations and analysis[J]. Trends in Analytical Chemistry, 2018, 102: 91-102. |
5 | 唐志民, 马新宾. 溶菌酶分子印迹聚乳酸微球的制备及吸附性能[J]. 化工学报, 2016, 67(6): 2410-2416. |
Tang Z H, Ma X B. Preparation and adsorption properties of lysozyme molecularly imprinted polylactide microsphere[J].CIESC Journal, 2016, 67(6): 2410-2416. | |
6 | Fan J, Li L, Tian Z, et al. A novel free-standing flexible molecularly imprinted membrane for selective separation of synephrine in methanol–water media[J]. Journal of Membrane Science, 2014, 467: 13-22. |
7 | Fan J P, Zhang F Y, Yang X M, et al. Preparation of a novel supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein recognition and permselectivity[J]. Journal of Applied Polymer Science. 2018, 135(41): 46740. |
8 | 赵宇, 谢培山, 卢平华, 等. 枳实、枳壳、青皮和陈皮等药材中辛弗林含量测定研究[J]. 世界科学技术, 2006, (4): 64-67. |
Zhao Y, Xie P S, Lu P H, et al. Determination of synephrine in Fructus Aurantii, Fructus Aurantii, Green Peel and Chenpi[J]. World Science and Technology, 2006, (4): 64-67. | |
9 | 蔡艳华. 枳实中生物碱辛弗林的提取分离研究[D]. 成都: 四川大学, 2005. |
Cai Y H. Study on the process to extract synephrine from Fructus Aurantii Immaturus[D]. Chengdu: Sichuan University, 2005. | |
10 | 胡静, 廖茂梁, 韦玮, 等. 枳实中辛弗林的固相萃取-HPLC测定[J]. 中国中药杂志, 2010, 35(6): 736-738. |
Hu J, Liao M L, Wei W, et al. Solid phase extraction of synephrine in Fructus Aurantii determined by HPLC[J]. Chinese Materia Medica, 2010, 35(6): 736-738. | |
11 | Fan J, Zhang L, Zhang X, et al. Molecularly imprinted polymers for selective extraction of synephrine from Aurantii Fructus Immaturus[J]. Analytical and Bioanalytical Chemistry, 2012, 402(3): 1337-1346. |
12 | 刘伟, 袁洪燕, 张群, 等. 柑橘类生物碱辛弗林的研究进展[J]. 湖南农业科学, 2016, (9): 101-106. |
Liu W, Yuan H Y, Zhang Q, et al. Research progress of Citrus alkaloid synephrine[J]. Hunan Agricultutral Science, 2016, (9): 101-106. | |
13 | 张国友, 邱静, 陈刚, 等. 柑橘中天然产物辛弗林的研究进展[J]. 中国食物与营养, 2015, 21(12): 8-12. |
Zhang G Y, Qiu J, Chen G, et al. Research progress of natural product synephrine in Citrus[J]. Food and Nutrition in China, 2015, 21(12): 8-12. | |
14 | Gao J, Zhou S, Hou Z, et al. One pot-economical fabrication of molecularly imprinted membrane employing carbon nanospheres sol coagulation bath with specific separation and advanced antifouling performances[J]. Separation and Purification Technology, 2019, 218: 59-69. |
15 | Fan J P, Cheng Y T, Zhang X H, et al. Preparation of a novel mixed non-covalent and semi-covalent molecularly imprinted membrane with hierarchical pores for separation of genistein in Radix Puerariae Lobatae[J]. Reactive and Functional Polymers, 2020, 146: 104439. |
16 | 张春静. 分子印迹复合膜的制备及其在药物分离上的应用[D]. 长沙: 中南大学, 2007. |
Zhang C J. Preparation of molecularly imprinted composite membrane and its application in drug separation[D]. Changsha: Central South University, 2007. | |
17 | Yoon K Y, An S J, Chen Y, et al. Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions[J]. Journal of Colloid and Interface Science, 2013, 403: 1-6. |
18 | 杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, (3): 193-200. |
Yang Y G, Chen C M, Wen Y F, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, (3): 193-200. | |
19 | 郭长春. 氧化石墨烯(GO)与磺化氧化石墨烯(SGO)的制备及其修饰电极电化学研究[D]. 青岛: 青岛大学, 2012. |
Guo C C. Preparation of graphene oxide (GO) and sulfonated graphene oxide (SGO) and electrochemistry stuudy of its modified electrode[D]. Qingdao: Qingdao University, 2012. | |
20 | Liu J, Liu G, Liu W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions[J]. Chemical Engineering Journal. 2014, 257: 299-308. |
21 | 陈建丽. 氧化石墨烯的功能化及其衍生物、复合物的制备与性能研究[D]. 长春: 吉林大学, 2013. |
Chen J L. Chemical functionalization of graphene oxide and grapene-based derivatives/nanocomposities: prepartions and properties[D]. Changchun: Jilin University, 2013. | |
22 | 刘海燕, 丁伟, 曲广淼, 等. 基于微波辐射的1-丁基-3-甲基咪唑氟硼酸盐离子液体的合成[J]. 大庆石油学院学报, 2008, 32(3): 49-52. |
Liu H Y, Ding W, Qiu G M, et al. Synthesis of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquids by microwave radiation[J]. Northeast Petroleum University, 2008, 32(3): 49-52. | |
23 | 王姿媛, 孙亦群. HPLC法测定陈皮、青皮中辛弗林的含量[J]. 中药材, 2009, 32(6): 913-914. |
Wang Z Y, Sun Y Q. Determination of synephrine in Chenpi and Qingpi by HPLC[J]. Chinese Medicinal Materials, 2009, 32(6): 913-914. | |
24 | Fan L, Luo C, Sun M, et al. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 523-529. |
25 | Wei H, Yang W, Xi Q, et al. Preparation of Fe3O4@graphene oxide core-shell magnetic particles for use in protein adsorption[J]. Materials Letters, 2012, 82: 224-226. |
26 | Yao Y, Miao S, Yu S, et al. Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent[J]. Journal of Colloid and Interface Science, 2012, 379(1): 20-26. |
27 | Fan J, Zheng B, Qin Y, et al. A superparamagnetic Fe3O4-graphene oxide nanocomposite for enrichment of nuciferine in the extract of Nelumbinis Folium (Lotus leaf)[J]. Applied Surface Science, 2016, 364: 332-339. |
28 | Peng L, Xu Z, Liu Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6: 5716. |
29 | Xu Z, Zhang J, Shan M, et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 458: 1-13. |
30 | Cao X, Yin Z, Zhang H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors[J]. Energy & Environmental Science, 2014, 7(6): 1850-1865. |
31 | Fan J P, Yu J X, Yang X M, et al. Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein[J]. Chemical Engineering Journal, 2018, 337: 722-732. |
32 | Fan J P, Xu X K, Xu R, et al. Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus × media[J]. Chemical Engineering Journal, 2015, 279: 567-577. |
33 | Fan J P, Yang D, Xu X, et al. Solubility of daidzin in different organic solvents and (ethyl alcohol+water) mixed solvents[J]. The Journal of Chemical Thermodynamics, 2015, 88: 85-89. |
34 | Liu Y. Is the free energy change of adsorption correctly calculated?[J]. Journal of Chemical & Engineering Data, 2009, 54(7): 1981-1985. |
35 | Wang H, Yuan X, Wu Y, et al. Corrigendum to “Adsorption characteristics and behaviors of graphene oxide for Zn(Ⅱ) removal from aqueous solution” [Appl. Surf. Sci. 279 (2013) 432-440][J]. Applied Surface Science, 2014, 301: 585. |
36 | Wu X, Wu Y, Chen L, et al. Bioinspired synthesis of pDA@GO-based molecularly imprinted nanocomposite membranes assembled with dendrites-like Ag microspheres for high-selective adsorption and separation of ibuprofen[J]. Journal of Membrane Science, 2018, 553: 151-162. |
37 | Lu J, Qiu Y, Wu Y, et al. Bidirectional molecularly imprinted membranes for selective recognition and separation of pyrimethamine: a double-faced loading strategy[J]. Journal of Membrane Science, 2020, 60: 117917. |
38 | Ulbricht M. Membrane separations using molecularly imprinted polymers[J]. Journal of Chromatography B, 2004, 804(1): 113-125. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[11] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[12] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||