化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3018-3030.DOI: 10.11949/0438-1157.20200062
陈恺成1,2(),田于杰1(),李飞1,3(),吴昊4,王维1,2
收稿日期:
2020-01-15
修回日期:
2020-03-12
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
李飞
作者简介:
陈恺成(1995—),男,硕士研究生,基金资助:
Kaicheng CHEN1,2(),Yujie TIAN1(),Fei LI1,3(),Hao WU4,Wei WANG1,2
Received:
2020-01-15
Revised:
2020-03-12
Online:
2020-07-05
Published:
2020-07-05
Contact:
Fei LI
摘要:
流化床的设计、放大和优化需要对流域有基础的认识,然而气固系统的流域划分至今仍存在诸多争议。总结了气固流化系统流域划分的研究现状,并分析了流域划分的主要争议,发现文献中对快速床的界定存在分歧。通过耦合基于稳态EMMS的曳力模型开展双流体模拟,对不同气速和颗粒浓度下的循环流化床进行了数值研究。模拟结果捕捉到了颗粒回流、节涌等现象,据此确定了快速床的操作边界并绘制了流域图,该流域图能够展示循环床中的各流域形态。
中图分类号:
陈恺成, 田于杰, 李飞, 吴昊, 王维. 基于EMMS的循环流化床流域研究[J]. 化工学报, 2020, 71(7): 3018-3030.
Kaicheng CHEN, Yujie TIAN, Fei LI, Hao WU, Wei WANG. EMMS-based flow regime study of circulating fluidized beds[J]. CIESC Journal, 2020, 71(7): 3018-3030.
文献 | 基本变量 | 流域 |
---|---|---|
第一类 | ||
[ | Uslip-εs | 鼓泡流化、湍动流化、快速流化、稀相输送 |
[ | εg-Ug | 节涌流化、湍动流化、快速流化、密相输送、气力输送 |
[ | Gs-Ug | 鼓泡/湍动流化、快速流化、密相输送、稀相输送 |
[ | Uslip-Up | 快速流化、环-核稀相流、均匀稀相流 |
[ | Gs-Ug | 稀相输送、密相输送 |
[ | Gs-Ug | 鼓泡流化、湍动流化、快速流化、气力输送 |
[ | Gs-Ug-εs | 鼓泡流化、湍动流化、循环湍动床、低密度循环流化床、高密度循环流化床、气力输送 |
第二类 | ||
[ | (ρs-ρg)-dp | A、B、C、D类颗粒 |
[ | Ug*-Ar | 固定床、移动床、喷动床、循环床、输送床等 |
[ | Ω-Ar | 固定床、流化床、输送床 |
[ | Re-Ar | 鼓泡流、节涌流、湍动流、快速流、稀相流等 |
第三类 | ||
[ | Re-Ar-H/D | 鼓泡流动、非鼓泡流动、节涌流动、稀相输送 |
表1 文献中的流域图总结
Table 1 Regime diagrams in literature
文献 | 基本变量 | 流域 |
---|---|---|
第一类 | ||
[ | Uslip-εs | 鼓泡流化、湍动流化、快速流化、稀相输送 |
[ | εg-Ug | 节涌流化、湍动流化、快速流化、密相输送、气力输送 |
[ | Gs-Ug | 鼓泡/湍动流化、快速流化、密相输送、稀相输送 |
[ | Uslip-Up | 快速流化、环-核稀相流、均匀稀相流 |
[ | Gs-Ug | 稀相输送、密相输送 |
[ | Gs-Ug | 鼓泡流化、湍动流化、快速流化、气力输送 |
[ | Gs-Ug-εs | 鼓泡流化、湍动流化、循环湍动床、低密度循环流化床、高密度循环流化床、气力输送 |
第二类 | ||
[ | (ρs-ρg)-dp | A、B、C、D类颗粒 |
[ | Ug*-Ar | 固定床、移动床、喷动床、循环床、输送床等 |
[ | Ω-Ar | 固定床、流化床、输送床 |
[ | Re-Ar | 鼓泡流、节涌流、湍动流、快速流、稀相流等 |
第三类 | ||
[ | Re-Ar-H/D | 鼓泡流动、非鼓泡流动、节涌流动、稀相输送 |
文献 | 流域及其特征 | ||
---|---|---|---|
[ | 稀相输送:轴/径向浓度均匀 分布 | 密相输送:由稀相输送向快速流化转变时的 过渡流域 | 快速流化:轴向颗粒浓度分布上稀下浓;径向 环-核型颗粒浓度分布 |
[ | 均匀稀相流:轴/径向浓度 均匀分布;无颗粒聚团 | 环-核稀相流:出现颗粒聚团、径向环-核结构 | 快速流化:轴向颗粒浓度分布上稀下浓 |
[ | 气力输送:均匀流动 | 低密度循环流化床:轴向指数型/S形颗粒浓度 分布;径向环-核型颗粒浓度分布 | 高密度循环流化床:轴向颗粒浓度分布较为均匀; 径向颗粒浓度分布呈凹形抛物线 |
表2 循环床的流域细分及特征描述
Table 2 Regime classifications and characteristics in CFBs
文献 | 流域及其特征 | ||
---|---|---|---|
[ | 稀相输送:轴/径向浓度均匀 分布 | 密相输送:由稀相输送向快速流化转变时的 过渡流域 | 快速流化:轴向颗粒浓度分布上稀下浓;径向 环-核型颗粒浓度分布 |
[ | 均匀稀相流:轴/径向浓度 均匀分布;无颗粒聚团 | 环-核稀相流:出现颗粒聚团、径向环-核结构 | 快速流化:轴向颗粒浓度分布上稀下浓 |
[ | 气力输送:均匀流动 | 低密度循环流化床:轴向指数型/S形颗粒浓度 分布;径向环-核型颗粒浓度分布 | 高密度循环流化床:轴向颗粒浓度分布较为均匀; 径向颗粒浓度分布呈凹形抛物线 |
文献 | 关联式 | 颗粒物性参数 | 床层几何尺寸 |
---|---|---|---|
[ | 操作下限: | 31<dp<325 μm 706<ρs<2643 kg/m3 | 0.03<D<0.30 m |
操作上限: | 54<dp<1041 μm 703<ρs<2666 kg/m3 | 0.03<D<0.30 m | |
[ | 操作下限: | 31<dp<325 μm 660<ρs<3090 kg/m3 | 0.02<D<0.19 m 5.5<H<9.0 m |
操作上限: | 20<dp<290 μm 850<ρs<2740 kg/m3 | 0.038<D<0.050 m | |
[ | 操作下限: | 未给出 | 未给出 |
操作上限: | 20<dp<1041 μm 660<ρs<3090 kg/m3 | 0.02<D<0.30 m |
表3 界定快速床操作上下限的经验关联式
Table 3 Empirical correlations to outline the fast bed region
文献 | 关联式 | 颗粒物性参数 | 床层几何尺寸 |
---|---|---|---|
[ | 操作下限: | 31<dp<325 μm 706<ρs<2643 kg/m3 | 0.03<D<0.30 m |
操作上限: | 54<dp<1041 μm 703<ρs<2666 kg/m3 | 0.03<D<0.30 m | |
[ | 操作下限: | 31<dp<325 μm 660<ρs<3090 kg/m3 | 0.02<D<0.19 m 5.5<H<9.0 m |
操作上限: | 20<dp<290 μm 850<ρs<2740 kg/m3 | 0.038<D<0.050 m | |
[ | 操作下限: | 未给出 | 未给出 |
操作上限: | 20<dp<1041 μm 660<ρs<3090 kg/m3 | 0.02<D<0.30 m |
参数 | 数值 |
---|---|
物性参数 | |
颗粒密度ρs/(kg∕m3) | 1070 |
颗粒直径dp/μm | 49 |
气体密度ρg/(kg·m3) | 1.225 |
气体黏度μg/(Pa?s) | 1.7894×10-5 |
操作条件 | |
表观气速Ug/(m/s) | 2.2, 3.0, 3.4, 4.0 |
初始颗粒浓度εs0 | 0.01, 0.03, 0.05, 0.08, 0.10, 0.13, 0.15, 0.20, 0.25, 0.28, 0.30, 0.35 |
表4 模拟系统的物性参数与操作条件
Table 4 Material properties and operating conditions in simulations
参数 | 数值 |
---|---|
物性参数 | |
颗粒密度ρs/(kg∕m3) | 1070 |
颗粒直径dp/μm | 49 |
气体密度ρg/(kg·m3) | 1.225 |
气体黏度μg/(Pa?s) | 1.7894×10-5 |
操作条件 | |
表观气速Ug/(m/s) | 2.2, 3.0, 3.4, 4.0 |
初始颗粒浓度εs0 | 0.01, 0.03, 0.05, 0.08, 0.10, 0.13, 0.15, 0.20, 0.25, 0.28, 0.30, 0.35 |
参数 | 设置 |
---|---|
time step size | 0.0005 s |
max iterations | 50 |
gas-wall shear condition | no-slip |
solids-wall specularity coefficient | 0.0001 |
restitution coefficient | 0.9 |
transient formulation | first-order implicit |
pressure-velocity coupling | phase coupled SIMPLE |
gradient discretization | green-gauss cell based |
momentum discretization | second order upwind |
volume fraction discretization | QUICK |
表5 模拟设置
Table 5 Simulation settings
参数 | 设置 |
---|---|
time step size | 0.0005 s |
max iterations | 50 |
gas-wall shear condition | no-slip |
solids-wall specularity coefficient | 0.0001 |
restitution coefficient | 0.9 |
transient formulation | first-order implicit |
pressure-velocity coupling | phase coupled SIMPLE |
gradient discretization | green-gauss cell based |
momentum discretization | second order upwind |
volume fraction discretization | QUICK |
图10 快速床流域内的轴径向颗粒浓度分布(Ug=4 m·s-1)Gs —— 颗粒循环通量,kg/(m2·s)g —— 重力加速度,m/s2g0 —— 径向分布函数H —— 反应器高度,mHd —— 非均匀结构因子p —— 压力,Paq —— 脉动能通量,J/(m2·s)R —— 反应器半径,mr —— 径向位置坐标,mRe —— Reynolds数Ret —— 终端沉降Reynolds数U —— 表观速度,m/sUFD —— 快速床的操作下限[13],m/sUg* —— 无量纲表观气速[2]Umf —— 最小流化速度,m/sUslip —— 表观滑移速度,m/sUTF —— 快速床的操作上限[13],m/sUtr —— 湍动床向循环床的转变气速,m/sUtp —— 循环床向输送床的转变气速,m/su —— 真实速度,m/sugy —— 竖直方向上的真实气体速度,m/supy —— 竖直方向上的真实颗粒速度,m/sVCA —— 快速床的操作下限[22],m/sVCC —— 快速床的操作下限[22],m/sβ —— 气固相间曳力系数,kg/(m3·s)γ —— 碰撞耗散能,J/(m3·s)ε —— 体积分数Θs —— 颗粒温度,m2/s2κ —— 脉动能传导率,kg/(m·s)λ —— 体积黏度,Pa·sμ —— 动力黏度系数,Pa·sρ —— 密度,kg/m3τ —— 黏性应力张量,PaΩ —— Beranek数下角标g —— 气相p —— 颗粒s —— 固相
Fig.10 Axial and radial distribution of solids holdups in fast bed regime(Ug=4 m·s-1)
Ug / (m/s) | {a0, a1, …, a10} | {εg1, εg2} |
---|---|---|
2.2 | {0.016623, 0.493605, 6.389545, 47.358891, 221.919953, 684.633287, 1402.911209, 1877.571271, 1563.265977, 726.070792, 135.926522} | {0.400000, 0.995492} |
3.0 | {0.040268, 1.072476, 12.454369, 82.862589, 348.987241, 969.842486, 1796.688320, 2185.896346, 1667.924597, 718.182831, 125.826167} | {0.402399, 0.991664} |
3.4 | {0.003550, 0.123762, 1.871593, 16.096893, 86.800375, 305.222537, 705.575497, 1053.996368, 969.054176, 491.512368, 97.518733} | {0.400000, 0.997121} |
4.0 | {0.008547, 0.235299, 2.882084, 20.627771,95.098625, 293.303193, 608.805261, 834.270600, 717.833635, 347.089449, 64.694438} | {0.402399, 0.991364} |
附表1 非均匀结构因子Hd表达式中的系数 (Appendix 1 Coefficients in expressions of heterogeneity indexesHd)
Ug / (m/s) | {a0, a1, …, a10} | {εg1, εg2} |
---|---|---|
2.2 | {0.016623, 0.493605, 6.389545, 47.358891, 221.919953, 684.633287, 1402.911209, 1877.571271, 1563.265977, 726.070792, 135.926522} | {0.400000, 0.995492} |
3.0 | {0.040268, 1.072476, 12.454369, 82.862589, 348.987241, 969.842486, 1796.688320, 2185.896346, 1667.924597, 718.182831, 125.826167} | {0.402399, 0.991664} |
3.4 | {0.003550, 0.123762, 1.871593, 16.096893, 86.800375, 305.222537, 705.575497, 1053.996368, 969.054176, 491.512368, 97.518733} | {0.400000, 0.997121} |
4.0 | {0.008547, 0.235299, 2.882084, 20.627771,95.098625, 293.303193, 608.805261, 834.270600, 717.833635, 347.089449, 64.694438} | {0.402399, 0.991364} |
项目 | 方程 |
---|---|
连续性方程 | |
动量方程 | |
气相/固相应力 | |
颗粒压力 | |
颗粒黏度 | |
气相/颗粒体积黏度 | |
径向分布函数 |
附表2 双流体模型的控制方程和本构关系 (Appendix 2 Governing equations and constitutive equations in TFM)
项目 | 方程 |
---|---|
连续性方程 | |
动量方程 | |
气相/固相应力 | |
颗粒压力 | |
颗粒黏度 | |
气相/颗粒体积黏度 | |
径向分布函数 |
1 | Kunii D, Levenspiel O. Industrial applications of fluidized beds[M]//Fluidization Engineering. 2nd ed. Boston: Butterworth-Heinemann, 1991: 15-59. |
2 | Grace J R. Contacting modes and behavior classification of gas-solid and other two-phase suspensions[J]. Canadian Journal of Chemical Engineering, 1986, 64(3): 353-363. |
3 | Horio M. Overview of fluidization science and fluidized bed technologies[M]//Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. Cambridge:Woodhead Publishing, 2013: 3-41. |
4 | Yerushalmi J, Cankurt N T. Further studies of the regimes of fluidization[J]. Powder Technology, 1979, 24(2): 187-205. |
5 | Tian P, Wei Y, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
6 | 鲁波娜, 张景远, 王维, 等. FCC反应过程的CFD模拟进展[J]. 化工学报, 2016, 67(8): 3121-3132. |
Lu B N, Zhang J Y, Wang W, et al. CFD modeling of FCC reaction process: a review[J]. CIESC Journal, 2016, 67(8): 3121-3132. | |
7 | Dummer N F, Bartley J K, Hutchings G J. Vanadium phosphate materials as selective oxidation catalysts[M]//Gates B C, Knözinger H. Advances in Catalysis. Pittsburgh: Academic Press, 2011: 189-247. |
8 | Kunii D,Levenspiel O. Fluidization and mapping of regimes[M]//Fluidization Engineering. 2nd ed. Boston: Butterworth-Heinemann, 1991: 61-94. |
9 | Fox R O. Large-eddy-simulation tools for multiphase flows[J]. Annual Review of Fluid Mechanics, 2012, 4(1): 47-76. |
10 | Li J, Tung Y, Kwauk M. Energy transport and regime transition in particle-fluid two-phase flow[M]//Circulating Fluidized Bed Technology. Amsterdam:Elsevier, 1988: 75-87. |
11 | Cruz E, Steward F R, Pugsley T. New closure models for CFD modeling of high-density circulating fluidized beds[J]. Powder Technology, 2006, 169(3): 115-122. |
12 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. New York: Academic Press, 1994: 1197-1198. |
13 | Bai D, Jin Y, Yu Z. Flow regimes in circulating fluidized beds[J]. Chemical Engineering & Technology, 1993, 16(5): 307-313. |
14 | Chalermsinsuwan B, Boonprasop S, Nimmanterdwong P, et al. Revised fluidization regime characterization in high solid particle concentration circulating fluidized bed reactor[J]. International Journal of Multiphase Flow, 2014, 66: 26-37. |
15 | Dang N T Y, Gallucci F, Annaland M. An experimental investigation on the onset from bubbling to turbulent fluidization regime in micro-structured fluidized beds[J]. Powder Technology, 2014, 256: 166-174 |
16 | Grace J R, Issangya A S, Bai D, et al. Situating the high-density circulating fluidized bed[J]. AIChE Journal, 1999, 45(10): 2108-2116. |
17 | Bai D, Shibuya E, Nakagawa N, et al. Characterization of gas fluidization regimes using pressure fluctuations[J]. Powder Technology, 1996, 87(2): 105-111. |
18 | Varas A E, Peters E, Kuipers J A M. Experimental study of full field riser hydrodynamics by PIV/DIA coupling[J]. Powder Technology, 2017, 313: 402-416. |
19 | Chan C W, Seville J, Yang Z, et al. Particle motion in the CFB riser with special emphasis on PEPT-imaging of the bottom section[J]. Powder Technology, 2009, 196(3): 318-325. |
20 | Saayman J, Nicol W, van Ommen J R, et al. Fast X-ray tomography for the quantification of the bubbling-, turbulent- and fast fluidization-flow regimes and void structures[J]. Chemical Engineering Journal, 2013, 234: 437-447. |
21 | Salehi-Nik N, Sotudeh-Gharebagh R, Mostoufi N, et al. Determination of hydrodynamic behavior of gas-solid fluidized beds using statistical analysis of acoustic emissions[J]. International Journal of Multiphase Flow, 2009, 35(11): 1011-1016. |
22 | Bi H T, Grace J R. Flow regime diagrams for gas-solid fluidization and upward transport[J]. International Journal of Multiphase Flow, 1995, 21(6): 1229-1236. |
23 | Grace J R. Reflections on turbulent fluidization and dense suspension upflow[J]. Powder Technology, 2000, 113(3): 242-248. |
24 | Avidan A A, Yerushalmi J. Bed expansion in high velocity fluidization[J]. Powder Technology, 1982, 32(2): 223-232. |
25 | Cai P. Effect of operating temperature and pressure on the transition from bubbling to turbulent fluidization[J]. AIChE Symp. Ser., 1989, 85: 37-43. |
26 | Cai P, Jin Y, Yu Z Q, et al. Mechanism of flow regime transition from bubbling to turbulent fluidization[J]. AIChE Journal, 1990, 36(6): 955-956. |
27 | Dunham G E, Mann M D, Grewal N S. Dependence of transition to turbulent fluidization on static bed depth in a fluidized bed[C]//Avidan A A. Preprints of the Fourth International Conference on Circulating Fuidized Beds.Somerset, PA, 1993. |
28 | Guan G, Fushimi C, Tsutsumi A. Prediction of flow behavior of the riser in a novel high solids flux circulating fluidized bed for steam gasification of coal or biomass[J]. Chemical Engineering Journal, 2010, 164(1): 221-229. |
29 | Nakajima M, Harada M, Asai M, et al. Bubble fraction and voidage in an emulsion phase in the transition to a turbulent fluidized bed[C]// Circulating Fluidized Bed Ⅲ. 1991: 79. |
30 | Bi H T, Ellis N, Abba I A, et al. A state-of-the-art review of gas-solid turbulent fluidization[J]. Chemical Engineering Science, 2000, 55(21): 4789-4825. |
31 | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
32 | Shaul S, Rabinovich E, Kalman H. Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio[J]. Powder Technology, 2012, 228: 264-271. |
33 | Wang H, Chen Y, Wang W. Scale-dependent nonequilibrium features in a bubbling fluidized bed[J]. AIChE Journal, 2018, 64(7): 2364-2378. |
34 | Li J, Kwauk M. Particle-fluid two-phase flow [J]. China Particuology, 2003,1(1):42. |
35 | Li J, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23. |
36 | 王维, 洪坤, 鲁波娜, 等. 流态化模拟: 基于介尺度结构的多尺度CFD[J]. 化工学报, 2013, 64(1): 95-106. |
Wang W, Hong K, Lu B N, et al. Fluidized bed simulation: structure-dependent multiscale CFD[J]. CIESC Journal, 2013, 64(1): 95-106. | |
37 | Wang W, Lu B, Li J. Choking and flow regime transitions: simulation by a multi-scale CFD approach[J]. Chemical Engineering Science, 2007, 62(3): 814-819. |
38 | Lu B, Wang W, Li J. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447. |
39 | Shi Z, Wang W, Li J. A bubble-based EMMS model for gas-solid bubbling fluidization[J]. Chemical Engineering Science, 2011, 66(22): 5541-5555. |
40 | Hong K, Shi Z, Wang W, et al. A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow[J]. Chemical Engineering Science, 2013, 99: 191-202. |
41 | Tian Y, Lu B, Li F, et al. A steady-state EMMS drag model for fluidized beds[J]. Chemical Engineering Science, 2020, 219: 115616. |
42 | Wang W, Lu B, Dong W, et al. Multi-scale CFD simulation of operating diagram for gas-solid risers[J]. Canadian Journal of Chemical Engineering, 2008, 86(3): 448-457. |
43 |
Sun Z, Zhu J. A consolidated flow regime map of upward gas fluidization[J]. AIChE Journal, 2019. DOI: 10.1002/aic.16672.
DOI URL |
44 | Reh L. Fluid dynamics of CFB combustors[C]//Proceedings of the 5th International Conference on Circulating Fluidized Beds. Beijing: Science Press, 1996: 1-15. |
45 | Rabinovich E, Kalman H. Flow regime diagram for vertical pneumatic conveying and fluidized bed systems[J]. Powder Technology, 2011, 207(1): 119-133. |
46 | Ge W, Li J. Physical mapping of fluidization regimes—the EMMS approach[J]. Chemical Engineering Science, 2002, 57(18): 3993-4004. |
47 | Bai D, Issangya A S, Grace J R. A novel method for determination of choking velocities[J]. Powder Technology, 1998, 97(1): 59-62. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[8] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[9] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[10] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[11] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[12] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[13] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[14] | 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508. |
[15] | 朱莲峰, 王超, 张梦娟, 刘方正, 贾鑫, 安萍, 许光文, 韩振南. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验[J]. 化工学报, 2022, 73(8): 3720-3730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||