化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5129-5139.DOI: 10.11949/0438-1157.20200368
收稿日期:
2020-04-09
修回日期:
2020-05-28
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
张锴
作者简介:
张仪(1988—),男,博士研究生,ncepu_zy @163.com
基金资助:
Yi ZHANG,Bing LI,Yulong BAI,Kai ZHANG()
Received:
2020-04-09
Revised:
2020-05-28
Online:
2020-11-05
Published:
2020-11-05
Contact:
Kai ZHANG
摘要:
选择恰当的相间作用力模型是液固流态化动态特性CFD建模的关键。首先采用Richardson-Zaki关联式验证了稳态操作条件下整体固含率的实验结果,然后在基于颗粒动理学理论的欧拉-欧拉双流体模型中比较了Wen-Yu、Gidaspow、Syamlal-O’Brien、Dallavalle和TGS 5个曳力计算公式对液固流化床收缩和膨胀特性的数值模拟结果,进而探讨了Moraga等提出的升力模型影响行为及主要相间作用力影响机制。与实验测量数据比较结果表明:收缩过程中Syamlal-O’Brien和TGS曳力模型对响应时间预测较为准确,TGS曳力模型对整体固含率的预测精度较高;膨胀过程中TGS曳力模型对响应时间和整体固含率的预测优于其他模型。整体而言,基于静止颗粒群绕流直接模拟得到的TGS曳力模型忽略了颗粒-颗粒相互作用,与液固散式体系中颗粒动力学特性相符合。升力模型对动态特性模拟结果影响较小,CFD模拟时根据选择体系可予以适当忽略。
中图分类号:
张仪,李兵,白玉龙,张锴. 液固流态化动态过程中相间作用力的数值模拟及实验验证[J]. 化工学报, 2020, 71(11): 5129-5139.
Yi ZHANG,Bing LI,Yulong BAI,Kai ZHANG. Numerical simulation and experimental validation of inter-phase forces in dynamic process of liquid-solid fluidization[J]. CIESC Journal, 2020, 71(11): 5129-5139.
Description | Contraction | Expansion | ||
---|---|---|---|---|
case 1 | case 2 | case 3 | case 4 | |
experiments | ||||
bed height before sudden change in operating velocity, h0/mm | 530 | 675 | 400 | 505 |
liquid concentration before sudden change in operating velocity, εl,0 | 0.717 | 0.778 | 0.625 | 0.703 |
liquid operating velocity before the sudden change, u0/(mm·s-1) | 41 | 54 | 25 | 38 |
liquid operating velocity after the sudden change, u1/(mm·s-1) | 25 | 38 | 41 | 54 |
liquid temperature/℃ | 20 — 23 | |||
simulations | ||||
inlet boundary condition | uniform velocity inlet | |||
liquid inlet velocity, u1/(mm·s-1) | 25 | 38 | 41 | 54 |
outlet boundary condition | pressure outlet, 1.013×105 Pa | |||
wall boundary condition | no slip for liquid phase, free slip for solid phase | |||
initial bed height, h0/mm | 530 | 675 | 400 | 505 |
initial liquid velocity in the bed(ul,in = u0/εl,0), ul,in/(mm·s-1) | 57 | 69 | 40 | 54 |
表1 边界条件与初始化设置
Table 1 Boundary conditions and initialization settings
Description | Contraction | Expansion | ||
---|---|---|---|---|
case 1 | case 2 | case 3 | case 4 | |
experiments | ||||
bed height before sudden change in operating velocity, h0/mm | 530 | 675 | 400 | 505 |
liquid concentration before sudden change in operating velocity, εl,0 | 0.717 | 0.778 | 0.625 | 0.703 |
liquid operating velocity before the sudden change, u0/(mm·s-1) | 41 | 54 | 25 | 38 |
liquid operating velocity after the sudden change, u1/(mm·s-1) | 25 | 38 | 41 | 54 |
liquid temperature/℃ | 20 — 23 | |||
simulations | ||||
inlet boundary condition | uniform velocity inlet | |||
liquid inlet velocity, u1/(mm·s-1) | 25 | 38 | 41 | 54 |
outlet boundary condition | pressure outlet, 1.013×105 Pa | |||
wall boundary condition | no slip for liquid phase, free slip for solid phase | |||
initial bed height, h0/mm | 530 | 675 | 400 | 505 |
initial liquid velocity in the bed(ul,in = u0/εl,0), ul,in/(mm·s-1) | 57 | 69 | 40 | 54 |
Case | Experimental result | Simulated result/error | ||||
---|---|---|---|---|---|---|
Wen-Yu | Gidaspow | Syamlal-O’Brien | Dallavalle | TGS | ||
case 1 (h0 = 530 mm, u0 = 41 mm·s-1, u1 = 25 mm·s-1) | 0.375 | 0.425/13.2% | 0.421/12.2% | 0.4436/16.2% | 0.400/6.6% | 0.380/1.3% |
case 2 (h0 = 675 mm, u0 = 54 mm·s-1, u1 = 38 mm·s-1) | 0.297 | 0.341/14.7% | 0.316/6.4% | 0.327/10.1% | 0.321/8.0% | 0.300/0.9% |
表2 床层收缩过程终止时的整体固含率实验值和模拟值
Table 2 Experimental and simulated results of overall solids holdups after contraction process of liquid-solid fluidized bed
Case | Experimental result | Simulated result/error | ||||
---|---|---|---|---|---|---|
Wen-Yu | Gidaspow | Syamlal-O’Brien | Dallavalle | TGS | ||
case 1 (h0 = 530 mm, u0 = 41 mm·s-1, u1 = 25 mm·s-1) | 0.375 | 0.425/13.2% | 0.421/12.2% | 0.4436/16.2% | 0.400/6.6% | 0.380/1.3% |
case 2 (h0 = 675 mm, u0 = 54 mm·s-1, u1 = 38 mm·s-1) | 0.297 | 0.341/14.7% | 0.316/6.4% | 0.327/10.1% | 0.321/8.0% | 0.300/0.9% |
Case | Experimental result | Simulated result/error | ||||
---|---|---|---|---|---|---|
Wen-Yu | Gidaspow | Syamlal- O’Brien | Dallavalle | TGS | ||
case 3 (h0 = 400 mm, u0 = 25 mm·s-1, u1 = 41 mm·s-1) | 0.283 | 0.330/16.7% | 0.306/8.1% | 0.311/9.9% | 0.308/8.8% | 0.288/1.9% |
case 4 (h0 = 505 mm, u0 = 38 mm·s-1, u1 = 54 mm·s-1) | 0.222 | 0.265/19.4% | 0.239/7.5% | 0.246/10.8% | 0.248/11.7% | 0.231/3.9% |
表3 床层膨胀过程终止时的整体固含率实验值和模拟值
Table 3 Experimental and simulated result of overall solids holdups after expansion process of liquid-solid fluidized bed
Case | Experimental result | Simulated result/error | ||||
---|---|---|---|---|---|---|
Wen-Yu | Gidaspow | Syamlal- O’Brien | Dallavalle | TGS | ||
case 3 (h0 = 400 mm, u0 = 25 mm·s-1, u1 = 41 mm·s-1) | 0.283 | 0.330/16.7% | 0.306/8.1% | 0.311/9.9% | 0.308/8.8% | 0.288/1.9% |
case 4 (h0 = 505 mm, u0 = 38 mm·s-1, u1 = 54 mm·s-1) | 0.222 | 0.265/19.4% | 0.239/7.5% | 0.246/10.8% | 0.248/11.7% | 0.231/3.9% |
1 | 金涌, 祝京旭, 汪展文, 等. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
2 | Epstein N. Applications of liquid-solid fluidization[J]. International Journal of Chemical Reactor Engineering, 2003, 1: 1-16. |
3 | Slis P L, Willemse T W, Kramers H, et al. The response of the level of a liquid fluidized bed to a sudden change in the fluidizing velocity[J]. Applied Scientific Research, Section A, 1959, 8: 209-218. |
4 | Richardson J F, Zaki W N. Sedimentation and fluidization(Ⅰ)[J]. Transactions of the Institution of Chemical Engineers, 1954, 32: 35-53. |
5 | Fan L T, Schmitz J A, Miller E N. Dynamics of liquid-solid fluidized bed expansion[J]. AIChE Journal, 1963, 9(2): 149-153. |
6 | Gibilaro L G, Waldram S P, Foscolo P U. A simple mechanistic description of the unsteady state expansion of liquid-fluidized beds[J]. Chemical Engineering Science, 1984, 39(3): 607-610. |
7 | Asif M, Petersen J N, Kaufman E N, et al. A dynamic model of the hydrodynamics of a liquid fluidized bed[J]. Industrial & Engineering Chemistry Research, 1994, 33(9): 2151-2156. |
8 | Thelen T V, Ramirez W F. Bed-height dynamics of expanded beds[J]. Chemical Engineering Science, 1997, 52(19): 3333-3344. |
9 | Liu D, Fu Y. Dynamics of fine particles in liquid-solid fluidized beds[J]. Particuology, 2007, 5(6): 363-375. |
10 | 尤东光, 雍玉梅, 杨超, 等. 流量变化对液固流化床瞬态流化特性的影响[J]. 化工学报, 2012, 63(8): 2356-2364. |
You D G, Yong Y M, Yang C, et al. Effect of fluidizing flux change on liquid-solids fluidization characteristics[J]. CIESC Journal, 2012, 63(8): 2356-2364. | |
11 | Chen Z, Gibilaro L G, Foscolo P U. Two-dimensional voidage waves in fluidized beds[J]. Industrial & Engineering Chemistry Research, 1999, 38(3): 610-620. |
12 | 张锴, Brandani S. 流化床内颗粒流体两相流的CFD模拟[J]. 化工学报, 2010, 61(9): 2192-2207. |
Zhang K, Brandani S. CFD simulation of particle-fluid two-phase flow in fluidized beds[J]. CIESC Journal, 2010, 61(9): 2192-2207. | |
13 | Zhang K, Wu G, Brandani S, et al. CFD simulation of dynamic characteristics in liquid-solid fluidized beds[J]. Powder Technology, 2012, 227: 104-110. |
14 | Dallavalle J M. Micrometrics: The Technology of Fine Particles[M]. London: Pitman, 1948. |
15 | Enwald H, Peirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization[J]. International Journal of Multiphase Flow, 1996, 22: 21-66. |
16 | 刘大有. 二相流体动力学[M]. 北京: 高等教育出版社, 1993. |
Liu D Y. Fluid Dynamics of Two-phase Systems[M]. Beijing: Higher Education Press, 1993. | |
17 | 祁海鹰, 戴群特, 陈程. 大型流态化多相流数值模拟的关键科学问题——曳力模型的理论分析[J]. 力学与实践, 2014, 36(3): 269-277. |
Qi H Y, Dai Q T, Chen C. The key scientific problems in the Eulerian modeling of large-scale multi-phase flows— drag model[J]. Mechanics in Engineering, 2014, 36(3): 269-277. | |
18 | 毛在砂. 颗粒群研究: 多相流多尺度数值模拟的基础[J]. 过程工程学报, 2008, 8(4): 645-659. |
Mao Z S. Knowledge on particle swarm: the important basis for multi-scale numerical simulation of multiphase flows[J]. The Chinese Journal of Process Engineering, 2008, 8(4): 645-659. | |
19 | 黄社华, 李炜. 粘性流中刚性颗粒非恒定运动的附加质量力[J]. 武汉大学学报(工学版), 2002, 35(4): 13-17. |
Huang S H, Li W. On added mass force acting on a small particle moving unsteadily in viscous flows[J]. Engineering Journal of Wuhan University, 2002, 35(4): 13-17. | |
20 | 由长福, 祁海鹰, 徐旭常. Basset力研究进展与应用分析[J]. 应用力学学报, 2002, 19(2): 31-33. |
You C F, Qi H Y, Xu X C. Progresses and applications of Basset force[J]. Chinese Journal of Applied Mechanics, 2002, 19(2): 31-33. | |
21 | Cornelissen J T, Taghipour F, Escudie R, et al. CFD modelling of a liquid-solid fluidized bed[J]. Chemical Engineering Science, 2007, 62(22): 6334-6348. |
22 | Ye X, Chu D, Lou Y, et al. Numerical simulation of flow hydrodynamics of struvite pellets in a liquid-solid fluidized bed[J]. Journal of Environmental Sciences-China, 2017, 57(7): 391-401. |
23 | 张仪, 白玉龙, 骆丁玲, 等. 液固散式流态化CFD模拟中曳力模型的影响[J]. 化工学报, 2019, 70(11): 4207-4215. |
Zhang Y, Bai Y L, Luo D L, et al. Effect of drag models on CFD simulations for homogeneous liquid-solid fluidization[J]. CIESC Journal, 2019, 70(11): 4207-4215. | |
24 | Zbib H, Ebrahimi M, Einmozaffari F, et al. Comprehensive analysis of fluid-particle and particle-particle interactions in a liquid-solid fluidized bed via CFD-DEM coupling and tomography[J]. Powder Technology, 2018, 340: 116-130. |
25 | Koerich D M, Lopes G C, Rosa L M. Investigation of phases interactions and modification of drag models for liquid-solid fluidized bed tapered bioreactors[J]. Powder Technology, 2018, 339: 90-101. |
26 | Felice R D. Hydrodynamics of liquid fluidisation[J]. Chemical Engineering Science, 1995, 50(8): 1213-1245. |
27 | Garside J, Aldibouni M R. Velocity-voidage relationships for fluidization and sedimentation in solid-liquid systems[J]. Industrial & Engineering Chemistry Process Design and Development, 1977, 16(2): 206-214. |
28 | Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538. |
29 | Wen C Y, Yu Y H. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111. |
30 | Gidaspow D. Multiphase Flow and Fluidization: Continuumand and Kinetic Theory Descriptions[M]. Boston: Academic Press, 1994. |
31 | Syamlal M, O􀆳Brien T J. Simulation of granular layer inversion in liquid fluidized beds[J]. International Journal of Multiphase Flow,1988, 14(4): 473-481. |
32 | Tenneti S, Garg R, Subramaniam S. Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres[J]. International Journal of Multiphase Flow, 2011, 37(9): 1072-1092. |
33 | Drew D A, Lahey R T. Analytical modelling of multiphase flow[C]//Roco M C. Particulate Two-Phase Flow. Boston, MA: Butterworth-Heinemann, 1993: 509-566. |
34 | Moraga F J, Bonetto F J, Lahey R T, et al. Lateral forces on spheres in turbulent uniform shear flow[J]. International Journal of Multiphase Flow, 1999, 25(6): 1321-1372. |
35 | Mazzei L, Lettieri P. CFD simulations of expanding/contracting homogeneous fluidized beds and their transition to bubbling[J]. Chemical Engineering Science, 2008, 63(24): 5831-5847. |
36 | 王勤辉, 杨秋辉, 吴学成, 等. 多相流中颗粒旋转运动特性的研究进展[J]. 化工学报, 2011, 62(9): 2381-2390. |
Wang Q H, Yang Q H, Wu X C, et al. Research progress of particle rotation characteristics in multi-phase flows[J]. CIESC Journal, 2011, 62(9): 2381-2390. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[4] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[10] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[11] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[12] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[13] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[14] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[15] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||