化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1253-1263.DOI: 10.11949/0438-1157.20200427
收稿日期:
2020-04-24
修回日期:
2020-10-09
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
刘刚
作者简介:
李秉繁(1991—),男,博士研究生,基金资助:
LI Bingfan(),LIU Gang(),CHEN Lei
Received:
2020-04-24
Revised:
2020-10-09
Online:
2021-03-05
Published:
2021-03-05
Contact:
LIU Gang
摘要:
为了研究甲烷(CH4)溶解对原油分子间作用的影响机制,利用分子模拟方法,分别构建正庚烷与正庚烷、蜡分子、胶质、沥青质的最低能量构型,分析CH4氛围对原油分子间相互作用的影响。以CH4/原油分子体系模型为研究对象进行分子动力学模拟,考察CH4溶解对原油分子体系黏度的影响,根据原油分子间相互作用、径向分布函数、体积应变、自扩散系数以及体系内聚能密度变化规律揭示CH4溶解对原油分子间作用的影响机制,发现CH4的溶解增大了原油分子间的间距,削弱了体系内原油分子间的范德华作用;体积膨胀为原油分子的热运动提供了更多的空间,原油分子热运动加剧,使得油品的流动能力增强;不同原油分子体系的黏度、径向分布函数、体积应变、自扩散系数以及内聚能密度的变化趋势类似,原油分子体系中蜡、胶质、沥青质的存在并未改变CH4对原油分子间作用的影响机制。
中图分类号:
李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263.
LI Bingfan, LIU Gang, CHEN Lei. Study on the influence mechanism of CH4 dissolution on the intermolecular interaction between crude oil molecules based on molecular dynamics simulation[J]. CIESC Journal, 2021, 72(3): 1253-1263.
油样 | 20℃密度/(kg/m3) | 含蜡量/% | 胶质含量/% | 沥青质 含量/% |
---|---|---|---|---|
胜利原油 | 878.2 | 24.5 | 18.03 | 0.12 |
南阳原油 | 875 | 38.2 | — | 15 |
表1 常压条件下油样基本物性
Table1 Basic physical properties of oil samples under atmospheric pressure
油样 | 20℃密度/(kg/m3) | 含蜡量/% | 胶质含量/% | 沥青质 含量/% |
---|---|---|---|---|
胜利原油 | 878.2 | 24.5 | 18.03 | 0.12 |
南阳原油 | 875 | 38.2 | — | 15 |
体系 | 组分 | 摩尔比 |
---|---|---|
1 | 正庚烷/蜡分子/胶质(胜利原油简化模型体系) | 100∶13∶4 |
2 | 正庚烷/蜡分子/沥青质(南阳原油简化模型体系) | 100∶25∶4 |
表2 周期性体系中原油分子数量
Table 2 The number of molecular in periodic systems
体系 | 组分 | 摩尔比 |
---|---|---|
1 | 正庚烷/蜡分子/胶质(胜利原油简化模型体系) | 100∶13∶4 |
2 | 正庚烷/蜡分子/沥青质(南阳原油简化模型体系) | 100∶25∶4 |
体系 | 模拟时间/ps | 分段密度值/(g/cm3) | 标准差 | 平均值/(g/cm3) | 试验参考值/(g/cm3) | 绝对误差/% |
---|---|---|---|---|---|---|
胜利原油简化模型体系 | 40~60 | 0.86127 | 0.000685582 | 0.86150 | 0.878 | 1.879 |
60~80 | 0.86243 | |||||
80~100 | 0.86080 | |||||
南阳原油简化模型体系 | 40~60 | 0.84326 | 0.000943759 | 0.84199 | 0.875 | 3.773 |
60~80 | 0.84171 | |||||
80~100 | 0.84101 |
表3 模拟密度与试验参考密度对比
Table 3 Comparison between simulated density and test reference density
体系 | 模拟时间/ps | 分段密度值/(g/cm3) | 标准差 | 平均值/(g/cm3) | 试验参考值/(g/cm3) | 绝对误差/% |
---|---|---|---|---|---|---|
胜利原油简化模型体系 | 40~60 | 0.86127 | 0.000685582 | 0.86150 | 0.878 | 1.879 |
60~80 | 0.86243 | |||||
80~100 | 0.86080 | |||||
南阳原油简化模型体系 | 40~60 | 0.84326 | 0.000943759 | 0.84199 | 0.875 | 3.773 |
60~80 | 0.84171 | |||||
80~100 | 0.84101 |
图8 20℃条件下不同分子间的最低能量构型和CH4氛围下不同分子间的最低能量构型
Fig.8 The lowest energy configuration of different molecules and that of different molecules in CH4 atmosphere at 20℃
分子对 | 分子间间距/? | 分子间相互作用能/(kJ/mol) | ||||
---|---|---|---|---|---|---|
最低能量构型 | CH4氛围下最低 能量构型 | 相对改变量/% | 最低能量构型 | CH4氛围下最低能量构型 | 相对改变量/% | |
正庚烷/正庚烷 | 4.162 | 4.692 | 12.734 | 5.567 | 4.202 | -24.519 |
正庚烷/蜡分子 | 9.319 | 10.167 | 9.100 | 1.878 | 1.580 | -15.868 |
正庚烷/胶质 | 6.022 | 6.608 | 9.731 | 3.372 | 2.882 | -14.531 |
正庚烷/沥青质 | 10.604 | 11.239 | 5.988 | 1.618 | 1.446 | -10.630 |
表4 正庚烷与正庚烷、蜡分子、胶质、沥青质分子间间距及相互作用能
Table 4 Intermolecular spacing and interaction energy of n-heptane with n-heptane, wax, colloid and asphaltene
分子对 | 分子间间距/? | 分子间相互作用能/(kJ/mol) | ||||
---|---|---|---|---|---|---|
最低能量构型 | CH4氛围下最低 能量构型 | 相对改变量/% | 最低能量构型 | CH4氛围下最低能量构型 | 相对改变量/% | |
正庚烷/正庚烷 | 4.162 | 4.692 | 12.734 | 5.567 | 4.202 | -24.519 |
正庚烷/蜡分子 | 9.319 | 10.167 | 9.100 | 1.878 | 1.580 | -15.868 |
正庚烷/胶质 | 6.022 | 6.608 | 9.731 | 3.372 | 2.882 | -14.531 |
正庚烷/沥青质 | 10.604 | 11.239 | 5.988 | 1.618 | 1.446 | -10.630 |
溶气压力/MPa | 扩散系数×10-5/(cm2/s) | |
---|---|---|
胜利原油简化模型体系 | 南阳原油简化模型体系 | |
常压 | 3.315 | 3.105 |
1 | 3.496 | 3.268 |
4 | 3.795 | 3.564 |
8 | 3.985 | 3.827 |
16 | 3.784 | 3.697 |
表5 不同溶气压力条件下原油分子的扩散系数
Table5 Diffusion coefficient of crude oil molecules under different dissolved gas pressures
溶气压力/MPa | 扩散系数×10-5/(cm2/s) | |
---|---|---|
胜利原油简化模型体系 | 南阳原油简化模型体系 | |
常压 | 3.315 | 3.105 |
1 | 3.496 | 3.268 |
4 | 3.795 | 3.564 |
8 | 3.985 | 3.827 |
16 | 3.784 | 3.697 |
溶气压力/MPa | 胜利原油简化模型体系 | 南阳原油简化模型体系 | ||||
---|---|---|---|---|---|---|
CED×10-8/(J/m3) | EvdW×10-8/(J/m3) | EElectrostatic×10-8/(J/m3) | CED×10-8/(J/m3) | EvdW×10-8/(J/m3) | EElectrostatic×10-8/(J/m3) | |
常压 | 2.57 | 2.559 | 0.011 | 3.263 | 3.251 | 0.012 |
1 | 2.5 | 2.492 | 0.008 | 3.226 | 3.220 | 0.006 |
4 | 2.45 | 2.446 | 0.004 | 3.051 | 3.041 | 0.010 |
8 | 2.401 | 2.394 | 0.006 | 2.959 | 2.951 | 0.008 |
16 | 2.43 | 2.425 | 0.005 | 2.988 | 2.976 | 0.012 |
表6 不同溶气压力条件下原油分子体系的内聚能密度及分量
Table 6 Cohesive energy density and component of crude oil molecular system under different dissolved gas pressures
溶气压力/MPa | 胜利原油简化模型体系 | 南阳原油简化模型体系 | ||||
---|---|---|---|---|---|---|
CED×10-8/(J/m3) | EvdW×10-8/(J/m3) | EElectrostatic×10-8/(J/m3) | CED×10-8/(J/m3) | EvdW×10-8/(J/m3) | EElectrostatic×10-8/(J/m3) | |
常压 | 2.57 | 2.559 | 0.011 | 3.263 | 3.251 | 0.012 |
1 | 2.5 | 2.492 | 0.008 | 3.226 | 3.220 | 0.006 |
4 | 2.45 | 2.446 | 0.004 | 3.051 | 3.041 | 0.010 |
8 | 2.401 | 2.394 | 0.006 | 2.959 | 2.951 | 0.008 |
16 | 2.43 | 2.425 | 0.005 | 2.988 | 2.976 | 0.012 |
溶气压力/MPa | 胜利原油简化模型体系 | 南阳原油简化模型体系 | ||||||
---|---|---|---|---|---|---|---|---|
零剪切黏度/(mPa·s) | 体积应变/% | 自扩散系数×10-5/(cm2/s) | 内聚能密度×10-8/(J/m3) | 零剪切黏度/(mPa·s) | 体积应变/% | 自扩散系数×10-5/(cm2/s) | 内聚能密度×10-8/(J/m3) | |
常压 | 17.813 | 0 | 3.315 | 2.570 | 22.582 | 0 | 3.105 | 3.263 |
1 | 18.354 | -1.791 | 3.151 | 2.698 | 23.165 | -1.658 | 2.918 | 3.359 |
4 | 19.457 | -3.269 | 2.996 | 2.818 | 23.996 | -3.054 | 2.7415 | 3.409 |
8 | 19.790 | -3.602 | 2.986 | 2.890 | 24.430 | -3.401 | 2.723 | 3.462 |
表7 原油模型体系参数
Table 7 Crude oil system parameters
溶气压力/MPa | 胜利原油简化模型体系 | 南阳原油简化模型体系 | ||||||
---|---|---|---|---|---|---|---|---|
零剪切黏度/(mPa·s) | 体积应变/% | 自扩散系数×10-5/(cm2/s) | 内聚能密度×10-8/(J/m3) | 零剪切黏度/(mPa·s) | 体积应变/% | 自扩散系数×10-5/(cm2/s) | 内聚能密度×10-8/(J/m3) | |
常压 | 17.813 | 0 | 3.315 | 2.570 | 22.582 | 0 | 3.105 | 3.263 |
1 | 18.354 | -1.791 | 3.151 | 2.698 | 23.165 | -1.658 | 2.918 | 3.359 |
4 | 19.457 | -3.269 | 2.996 | 2.818 | 23.996 | -3.054 | 2.7415 | 3.409 |
8 | 19.790 | -3.602 | 2.986 | 2.890 | 24.430 | -3.401 | 2.723 | 3.462 |
1 | Yokozeki A. Solubility correlation and phase behaviors of carbon dioxide and lubricant oil mixtures[J]. Applied Energy, 2007, 84(2): 159-175. |
2 | Li B F, Liu G, Xing X, et al. Molecular dynamics simulation of CO2 dissolution in heavy oil resin-asphaltene[J]. Journal of CO2 Utilization, 2019, 33: 303-310. |
3 | Hinai N M A, Myers M B, Dehghani A M, et al. Effects of oligomers dissolved in CO2 or associated gas on IFT and miscibility pressure with a gas-light crude oil system[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106210. |
4 | Hu R, Crawshaw J P, Trusler J P M, et al. Rheology and phase behavior of carbon dioxide and crude oil mixtures[J]. Energy & Fuels, 2017, 31(6): 5776-5784. |
5 | Yang F, Li C X, Li B, et al. The solubility and rheology of live oils saturated by different alkane gases[J]. Petroleum Science & Technology, 2014, 32 (11): 1340-1348. |
6 | 于涛. 溶气原油流变性研究[D]. 青岛: 中国石油大学(华东), 2009. |
Yu T. Study on rheological properties of dissolved gas crude oil[D]. Qingdao: China University of Petroleum, 2009. | |
7 | Jooybari H S. A novel methodology for simultaneous estimation of gas diffusivity and solubility in bitumens and heavy oils[C]//SPE Heavy Oil Conference. Canada: Society of Petroleum Engineers, 2012. |
8 | Bank G C, Riestenberg D E, Koperna G J. CO2-enhanced oil recovery potential of the appalachian basin[C]// Proceedings of Eastern Regional Meeting. Lexington, 2007. |
9 | Yang Z H, Li M Y, Peng B, et al. Dispersion property of CO2 in oil(Ⅰ): Volume expansion of CO2 + alkane at near critical and supercritical condition of CO2[J]. Journal of Chemical & Engineering Data, 2012, 57 (3): 882-889. |
10 | Yang Z H, Li M Y, Peng B, et al. Volume expansion of CO2 + oil at near critical and supercritical conditions of CO2[J]. Fuel, 2013, 112 (10): 283-288. |
11 | Abivin P, Henaut I, Moan M, et al. Rheological characterization of foamy oils under pressure[C]// AIP Conference Proceedings. Monterey, 2008: 827-829. |
12 | Stubbs J M, Siepmann J. Binary phase behavior and aggregation of dilute methanol in supercritical carbon dioxide: a Monte Carlo simulation study[J]. The Journal of Chemical Physics, 2004, 121(3): 1525. |
13 | Brochard L, Vandamme M, Pellenq R, et al. Adsorption-induced deformation of microporous materials: coal swelling induced by CO2-CH4 competitive adsorption[J]. Langmuir, 2012, 28(5): 2659-2670. |
14 | Jin Z, Firoozabadi A. Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations[J]. Fluid Phase Equilibria, 2014, 382: 10-20. |
15 | Zhang J F, Pan Z J, Liu K Y, et al. Molecular simulation of CO2 solubility and its effect on octane swelling[J]. Energy & Fuels, 2013, 27 (5): 2741-2747. |
16 | Liu B, Shi J, Sun B, et al. Molecular dynamics simulation on volume swelling of CO2-alkane system[J]. Fuel, 2015, 143: 194-201. |
17 | Zabala D, Nieto-Draghi C, de Hemptinne J C, et al. Diffusion coefficients in CO2/n-alkane binary liquid mixtures by molecular simulation[J]. Journal of Physical Chemistry B, 2008, 112 (51): 16610-16618. |
18 | Zoi A M, Andreas H, Thomas M K, et al. Viscosity of heavy n-alkanes and diffusion of gases therein based on molecular dynamics simulations and empirical correlations[J]. Journal of Chemical Thermodynamics, 2015, 91: 101-107. |
19 | Kwon T W, Lee S H. Molecular dynamics simulation studies of mid-size liquid n-alkanes, C12-C160[J]. Bulletin of the Korean Chemical Society, 2015, 36(4): 1165-1171. |
20 | Rogel E. Simulation of interactions in asphaltene aggregates[J]. Energy & Fuels, 2000, 14(3): 566-574. |
21 | Takanohashi T, Sato S, Tanaka R. Molecular dynamics simulation of structural relaxation of asphaltene aggregates[J]. Petroleum Science and Technology, 2003, 21(3/4): 491-505. |
22 | Takanohashi T, Sato S, Saito I, et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates[J]. Energy & Fuels, 2003, 17(1): 135-139. |
23 | Zhang L, Greenfield M L. Analyzing properties of model asphalts using molecular simulation[J]. Energy & Fuels, 2007, 21(3): 1712-1716. |
24 | Zhang L, Greenfield M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy & Fuels, 2008, 22(5): 3363-3375. |
25 | 李英峰. 石油沥青质缔合体的分子动力学研究和抑制剂的筛选[D]. 青岛: 中国石油大学(华东), 2007. |
Li Y F. Molecular dynamics study of the petroleum-derived asphaltene aggregate and the choice of inhibitors[D]. Qingdao: China University of Petroleum, 2007. | |
26 | 张红, 沈本贤. 蜡晶形态结构对原油降凝的影响[J]. 石油学报(石油加工), 2006, 22(5): 74-79. |
Zhang H, Shen B X. Effect of wax crystal morphology on the pour point decline of crude oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2006, 22(5): 74-79. | |
27 | 李传宪, 白帆, 王燕, 等. 原油组成对原油管道结蜡规律的影响[J]. 化工学报, 2014, 65(11): 4571-4578. |
Li C X, Bai F, Wang Y, et al. Influence of crude oil composition on wax deposition on tubing wall[J]. CIESC Journal, 2014, 65(11): 4571-4578. | |
28 | Jennings P W. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy[R]. Washington D C: Strategic Highway Research Program of National Research Council, 1993: 1-21. |
29 | Bouhadda Y, Bormann D, Sheu E, et al. Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction[J]. Fuel, 2007, 86 (12/13): 1855-1864. |
30 | Kowalewski I, Vandenbroucke M, Huc A Y, et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs[J]. Energy & Fuels, 1996, 10(1): 97-107. |
31 | 陈雪娇, 侯磊, 李师瑶. 航空煤油冰点及黏温关系的分子动力学模拟[J]. 石油科学通报, 2016, 1(3): 493-502. |
Chen X J, Hou L, Li S Y. Molecular dynamics simulation of freezing point and viscosity-temperature relationship of aviation kerosene[J]. Petroleum Science Bulletin, 2016, 1(3): 493-502. | |
32 | Everett D H, Powl J C. Adsorption in slit-like and cylindrical micropores in the Henry's law region. A model for the microporosity of carbons[J]. Journal of the Chemical Society, Faraday Transactions, 1976, 72: 619-636. |
33 | Billemont P, Coasne B, de Weireld G. An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water[J]. Langmuir, 2011, 27(3): 1015-1024. |
34 | Billemont P, Coasne B, de Weireld G. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013, 29(10): 3328-3338. |
35 | Rapaport D C. The Art of Molecular Dynamics Simulation[M]. Cambridge: Cambridge University Press, 2004. |
36 | 于共奇. 重质油组分及其溶解机理的分子动力学研究[D]. 青岛: 中国石油大学(华东), 2013. |
Yu G Q. Molecular dynamics of heavy oil components and their dissolution mechanism[D].Qingdao: China University of Petroleum, 2013. | |
37 | 王少刚, 刘翠霞, 坚增运. Al-Cu合金扩散系数的分子动力学模拟研究[J]. 西安工业大学学报, 2018, 38(6): 559-564. |
Wang S G, Liu C X, Jian Z Y. Molecular dynamics simulation of diffusion coefficient of Al-Cu alloy[J]. Journal of Xi'an Technological University, 2018, 38(6): 559-564. | |
38 | 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007. |
Chen Z L, Xu W R, Tang L D. Theory and Practice of Molecular Simulation[M]. Beijing: Chemical Industry Press, 2007. | |
39 | Grosse A V. Viscosity and self-diffusion of liquid metals[J]. Science, 1964, 145(3627): 50-51. |
40 | Li C, Strachan A. Cohesive energy density and solubility parameter evolution during the curing of thermoset[J]. Polymer, 2018, 135: 162-170. |
41 | Zhang W, Qing Y, Zhong W, et al. Mechanism of modulus improvement for epoxy resin matrices: a molecular dynamics simulation[J]. Reactive & Functional Polymers, 2017, 111: 60-67. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[5] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[6] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[11] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[12] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[13] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[14] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[15] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||