化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4031-4045.DOI: 10.11949/0438-1157.20200496
收稿日期:
2020-05-06
修回日期:
2020-07-01
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
王振华
作者简介:
刘鑫(1996—),女,硕士研究生,Xin LIU(),Pingli FENG,Wenshuo HOU,Zhenhua WANG(),Kening SUN
Received:
2020-05-06
Revised:
2020-07-01
Online:
2020-09-05
Published:
2020-09-05
Contact:
Zhenhua WANG
摘要:
锂硫电池因其能量密度高、成本较低、绿色环保等特点近年来受到广泛关注,但是当采用醚类电解液时,反应的中间产物会发生溶解穿梭导致活性物质流失和库仑效率低等严重问题,在正极和隔膜之间嵌入功能性中间层是解决这些问题的有效手段。对近年来锂硫电池中间层的研究进展进行了介绍,从抑制多硫化物扩散、降低正极界面电阻以及提升反应动力学三个方面对中间层进行分类总结,并展望了锂硫电池功能性中间层未来的设计方向和发展前景。
中图分类号:
刘鑫, 冯平丽, 侯文烁, 王振华, 孙克宁. 锂硫电池中间层的研究进展[J]. 化工学报, 2020, 71(9): 4031-4045.
Xin LIU, Pingli FENG, Wenshuo HOU, Zhenhua WANG, Kening SUN. Research progress of interlayers for lithium-sulfur batteries[J]. CIESC Journal, 2020, 71(9): 4031-4045.
1 | Yoshino A. The birth of the lithium-ion battery [J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
2 | Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries [J]. Advanced Energy Materials, 2017, 7(24): 1700260. |
3 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review [J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
4 | Zhou J, Guo Y, Liang C, et al. A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode [J]. Chemical Communications, 2018, 54(43): 5478-5481. |
5 | 谷穗, 靳俊, 卢洋, 等. 锂硫电池的穿梭效应与抑制 [J]. 储能科学与技术, 2017, 6(5): 1026-1040. |
Gu S, Jin J, Lu Y, et al. Recent progress in research on the shuttle effect and its suppression for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 1026-1040. | |
6 | Xi K, Kidambi P R, Chen R, et al. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries [J]. Nanoscale, 2014, 6(11): 5746-5753. |
7 | 李巧乐, 燕映霖, 杨蓉, 等. 锂硫电池用硫化锂正极复合材料的研究现状 [J]. 化工进展, 2017, 36(9): 3353-3361. |
Li Q L, Yan Y L, Yang R, et al. Research status of lithium sulfide composites as cathode for lithium sulfur battery [J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3353-3361. | |
8 | 胡策军, 杨积瑾, 王航超, 等. 锂硫电池安全性问题现状及未来发展态势 [J]. 储能科学与技术, 2018, 7(6): 1082-1093. |
Hu C J, Yang J J, Wang H C, et al. Reasearch progress of safe lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. | |
9 | Ogoke O, Wu G, Wang X L, et al. Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries [J]. Journal of Materials Chemistry A, 2017, 5(2): 448-469. |
10 | 张魏栋, 范磊, 朱守圃, 等. 高容量锂硫电池近期研究进展 [J]. 储能科学与技术, 2017, 6(3): 534-549. |
Zhang W D, Fan L, Zhu S P, et al. Recent developments in high-energy lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 534-549. | |
11 | Fang R P, Zhao S Y, Hou P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries [J]. Advanced Materials, 2016, 28(17): 3374-3382. |
12 | Li Y J, Fan J M, Zheng M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries [J]. Energy & Environmental Science, 2016, 9(6): 1998-2004. |
13 | Wu X, Fan L, Wang M, et al. A long-life lithium-sulfur battery derived from nori based nitrogen and oxygen dual-doped 3D hierarchical biochar [J]. ACS Applied Materials and Interfaces, 2017, 9(22): 18889-18896. |
14 | Jiao Y, Chen W, Lei T Y, et al. A novel polar copolymer design as a multi-functional binder for strong affinity of polysulfides in lithium-sulfur batteries [J]. Nanoscale Research Letters, 2017, 12(1): 195. |
15 | Li Y, Gentle I R, Wang D W. Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for Li-S batteries [J]. Journal of Materials Chemistry A, 2017, 5(11): 5460-5465. |
16 | Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries [J]. Angewandte Chemie International Edition, 2015, 54(13): 3907-3911. |
17 | Li X N, Lu Y, Hou Z G, et al. SnS2-compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries [J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19550-19557. |
18 | Yang Y, Wang Z, Li G, et al. Inspired by the “tip effect”: a novel structural design strategy for the cathode in advanced lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2017, 5(7): 3140-3144. |
19 | Yang H, Guo C, Chen J, et al. An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries [J]. Angewandte Chemie International Edition, 2019, 58(3): 791-795. |
20 | Zhang S G, Ueno K, Dokko K, et al. Recent advances in electrolytes for lithium–sulfur batteries [J]. Advanced Energy Materials, 2015, 5(16): 1500117. |
21 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律 [J]. 化工学报, 2020, 71(6): 2688-2695. |
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes [J]. CIESC Journal, 2020, 71(6): 2688-2695. | |
22 | Zhang R, Li N W, Cheng X B, et al. Advanced micro/nanostructures for lithium metal anodes [J]. Advanced Science, 2017, 4(3): 1600445. |
23 | Li S, Dai H, Li Y, et al. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery [J]. Energy Storage Materials, 2019, 18: 222-228. |
24 | Su Y S, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer [J]. Nature Communications, 2012, 3: 1166. |
25 | Jeong Y, Kim J, Kwon S, et al. Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries [J]. Journal of Materials Chemistry A, 2017, 5(45): 23909-23918. |
26 | Huang J Q, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects [J]. Energy Storage Materials, 2015, 1: 127-145. |
27 | Jeong Y C, Kim J H, Nam S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries [J]. Advanced Functional Materials, 2018, 28(38): 1707411. |
28 | 黄佳琦, 孙滢智, 王云飞, 等. 锂硫电池先进功能隔膜的研究进展 [J]. 化学学报, 2017, 75(2): 173-188. |
Huang J Q, Sun Y Z, Wang Y F, et al. Review on advanced functional separators for lithium-sulfur batteries [J]. Acta Chimica Sinica, 2017, 75(2): 173-188. | |
29 | Fan L L, Li M, Li X F, et al. Interlayer material selection for lithium-sulfur batteries [J]. Joule, 2019, 3(2): 361-386. |
30 | Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries [J]. Chemical Society Reviews, 2016, 45(20): 5605-5634. |
31 | Ma L, Hendrickson K E, Wei S, et al. Nanomaterials: science and applications in the lithium-sulfur battery [J]. Nano Today, 2015, 10(3): 315-338. |
32 | Cai Q, Li Y, Li Q, et al. Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li-Se batteries [J]. Nano Energy, 2017, 32: 1-9. |
33 | Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer [J]. Chemical Communications, 2012, 48(70): 8817-8819. |
34 | Chung S H, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator [J]. The Journal of Physical Chemistry Letters, 2014, 5(11): 1978-1983. |
35 | Kim H M, Hwang J Y, Manthiram A, et al. High-performance lithium-sulfur batteries with a self-assembled multiwall carbon nanotube interlayer and a robust electrode–electrolyte interface [J]. ACS Applied Materials & Interfaces, 2016, 8(1): 983-987. |
36 | Huang J Q, Xu Z L, Abouali S, et al. Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries [J]. Carbon, 2016, 99: 624-632. |
37 | Zhang P, Qin F, Zou L, et al. Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries [J]. Nanoscale, 2017, 9(33): 12189-12195. |
38 | Xiao Q, Li G, Li M, et al. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2020, 44: 61-67. |
39 | Gu X X, Lai C, Liu F, et al. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries [J]. Journal of Materials Chemistry A, 2015, 3(18): 9502-9509. |
40 | Zheng B B, Li N R, Yang J, et al. Waste cotton cloth derived carbon microtube textile: a robust and scalable interlayer for lithium-sulfur batteries [J]. Chemical Communications, 2019, 55(16): 2289-2292. |
41 | Yang Y, Sun W, Zhang J, et al. High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer [J]. Electrochimica Acta, 2016, 209: 691-699. |
42 | Chang C H, Chung S H, Manthiram A. Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators [J]. Small, 2016, 12(2): 174-179. |
43 | Pei F, Lin L L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries [J]. Joule, 2018, 2(2): 323-336. |
44 | Zhai P Y, Peng H J, Cheng X B, et al. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries [J]. Energy Storage Materials, 2017, 7: 56-63. |
45 | Huang J Q, Zhang Q, Peng H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries [J]. Energy & Environmental Science, 2014, 7(1): 347-353. |
46 | Lei T, Chen W, Lv W, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries [J]. Joule, 2018, 2(10): 2091-2104. |
47 | Conder J, Forner Cuenca A, Gubler E M, et al. Performance-enhancing asymmetric separator for lithium-sulfur batteries [J]. ACS Applied Materials & Interfaces, 2016, 8(29): 18822-18831. |
48 | Song J, Noh H, Lee H, et al. Polysulfide rejection layer from alpha-lipoic acid for high performance lithium-sulfur battery [J]. Journal of Materials Chemistry A, 2015, 3(1): 323-330. |
49 | Shaibani M, Akbari A, Sheath P, et al. Suppressed polysulfide crossover in Li-S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode [J]. ACS Nano, 2016, 10(8): 7768-7779. |
50 | Li G, Wang C, Cai W, et al. The dual actions of modified polybenzimidazole in taming the polysulfide shuttle for long-life lithium-sulfur batteries [J]. NPG Asia Materials, 2016, 8:e317. |
51 | 许睿, 赵梦, 黄佳琦. 复合隔膜在锂硫电池中的应用评述 [J]. 储能科学与技术, 2017, 6(3): 433-450. |
Xu R, Zhao M, Huang J Q. Progress in composite separators for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 433-450. | |
52 | Pan H, Tan Z, Zhou H, et al. Fe3C-N-doped carbon modified separator for high performance lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2019, 39: 101-108. |
53 | Wang L, Yang Z, Nie H, et al. A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries [J]. Journal of Materials Chemistry A, 2016, 4(40): 15343-15352. |
54 | Liu C Y, Li E Y. Adsorption mechanisms of lithium polysulfides on graphene-based interlayers in lithium sulfur batteries [J]. ACS Applied Energy Materials, 2018, 1(2): 455-463. |
55 | Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries [J]. Advanced Materials, 2017, 29(20): 1601759. |
56 | 彭娜, 翟鹏飞, 王景涛, 等. 二氧化锰纳米片改性隔膜在锂硫电池中的应用 [J]. 化工学报, 2020, 71 (5): 2389-2400. |
Peng N, Zhai P F, Wang J T, et al. Application of manganese dioxide nanosheets modified separator for lithium-sulfur batteries [J]. CIESC Journal, 2020, 71 (5): 2389-2400. | |
57 | Yu M, Ma J, Song H, et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries [J]. Energy & Environmental Science, 2016, 9(4): 1495-1503. |
58 | Fan C Y, Liu S Y, Li H H, et al. Synergistic design of cathode region for the high-energy-density Li-S batteries [J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28689-28699. |
59 | An Y, Zhang Z, Fei H, et al. Ultrafine TiO2 confined in porous-nitrogen-doped carbon from metal-organic frameworks for high-performance lithium sulfur batteries [J]. ACS Applied Materials and Interfaces, 2017, 9(14): 12400-12407. |
60 | He J R, Chen Y F, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries [J]. Energy & Environmental Science, 2018, 11(9): 2560-2568. |
61 | Yu X, Zhou G, Cui Y. Mitigation of shuttle effect in Li-S battery using a self-assembled ultrathin molybdenum disulfide interlayer [J]. ACS Applied Materials and Interfaces, 2019, 11(3): 3080-3086. |
62 | Niu S, Lv W, Zhou G, et al. Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery [J]. Nano Energy, 2016, 30: 138-145. |
63 | Tu S B, Chen X, Zhao X X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries [J]. Advanced Materials, 2018, 30(45): 1804581. |
64 | Peng H J, Wang D W, Huang J Q, et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries [J]. Advanced Science, 2016, 3(1): 1500268. |
65 | Yao H B, Yan K, Li W Y, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface [J]. Energy Environ. Sci., 2014, 7(10): 3381-3390. |
66 | Fan C Y, Yuan H Y, Li H H, et al. The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li-S batteries [J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16108-16115. |
67 | Zhao Y, Liu M, Lv W, et al. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery [J]. Nano Energy, 2016, 30: 1-8. |
68 | Zhang K, Qin F, Fang J, et al. Nickel foam as interlayer to improve the performance of lithium-sulfur battery [J]. Journal of Solid State Electrochemistry, 2014, 18(4): 1025-1029. |
69 | Sun J, Sun Y, Pasta M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium–sulfur batteries [J]. Advanced Materials, 2016, 28(44): 9797-9803. |
70 | Kong L, Li B Q, Peng H J, et al. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries [J]. Advanced Energy Materials, 2018, 8(20): 1800849. |
71 | Wu J, Li X, Zeng H, et al. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium–sulfur batteries [J]. Journal of Materials Chemistry A, 2019, 7(13): 7897-7906. |
72 | Lin H B, Yang L Q, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries [J]. Energy & Environmental Science, 2017, 10(6): 1476-1486. |
73 | Pu J, Shen Z, Zheng J, et al. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance [J]. Nano Energy, 2017, 37: 7-14. |
74 | Liu D, Zhang C, Zhou G, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect [J]. Advanced Science, 2018, 5(1): 1700270. |
75 | Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries [J]. Nature Communications, 2015, 6(1): 1-8. |
76 | Sun W, Ou X, Yue X, et al. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries [J]. Electrochimica Acta, 2016, 207: 198-206. |
77 | Zhou G, Tian H, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries [J]. Proceedings of the National Academy of Sciences of America, 2017, 114(5): 840-845. |
78 | Wang F, Qian J, Li Y, et al. Co9S8 nanorods as an electrocatalyst to enhance polysulfide conversion and alleviate passivation in Li-S batteries under lean electrolyte conditions [J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21701-21708. |
79 | Zhang L L, Chen X, Wan F, et al. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries [J]. ACS Nano, 2018, 12(9): 9578-9586. |
80 | Tian D, Song X, Wang M, et al. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries [J]. Advanced Energy Materials, 2019, 9(46): 1901940. |
81 | Wang M, Fan L, Wu X, et al. The SnS2/SnO2 heterostructures toward enhanced electrochemical performance of lithium-sulfur batteries [J]. Chemistry - A European Journal, 2019, 25(21): 5416-5421. |
82 | Wang N, Chen B, Qin K Q, et al. Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: a study of synergistic adsorption-electrocatalysis function. [J]. Nano Energy, 2019, 60: 332-339. |
83 | Zhou T H, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries [J]. Energy & Environmental Science, 2017, 10(7): 1694-1703. |
84 | Zhang B, Luo C, Deng Y, et al. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries [J]. Advanced Energy Materials, 2020, 10(15): 2000091. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[8] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[9] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[14] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[15] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||