1 |
Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
|
2 |
Schmuch R, Wagner R, Hörpel G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278.
|
3 |
Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
4 |
Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
|
5 |
Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261: 112-119.
|
6 |
Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536.
|
7 |
Park M S, Ma S B, Lee D J, et al. A highly reversible lithium metal anode[J]. Scientific Reports, 2014, 4: 3815.
|
8 |
Aryanfar A, Brooks D J, Colussi A J, et al. Thermal relaxation of lithium dendrites[J]. Physical Chemistry Chemical Physics, 2015, 17(12): 8000-8005.
|
9 |
Aryanfar A, Brooks D, Merinov B V, et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726.
|
10 |
Ely D R, Jana A, García R E. Phase field kinetics of lithium electrodeposits[J]. Journal of Power Sources, 2014, 272: 581-594.
|
11 |
Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385.
|
12 |
Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 1903645.
|
13 |
张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695.
|
|
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695
|
14 |
Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565.
|
15 |
Yang Q, Li W, Dong C, et al. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries[J]. Journal of Energy Chemistry, 2020, 42: 83-90.
|
16 |
Ma Y, Dong C, Yang Q, et al. Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries[J]. Journal of Energy Chemistry, 2020, 42: 49-55.
|
17 |
Tan J, Tartakovsky A M, Ferris K, et al. Investigating the effects of anisotropic mass transport on dendrite growth in high energy density lithium batteries[J]. Journal of the Electrochemical Society, 2016, 163(2): A318-A327.
|
18 |
Mayers M Z, Kaminski J W, Miller T F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26214-26221.
|
19 |
Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie International Edition, 2018, 57(19): 5301-5305.
|
20 |
陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121.
|
|
Chen Y, Mu T C. Application of deep eutectic solvents in battery and electrocatalysis[J]. CIESC Journal, 2020, 71(1): 106-121.
|
21 |
Xu K, von Cresce A, Lee U. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538-11543.
|
22 |
Barai P, Higa K, Srinivasan V. Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study[J]. Journal of the Electrochemical Society, 2017, 164(2): A180-A189.
|
23 |
Mogi R, Inaba M, Iriyama Y, et al. In situ atomic force microscopy study on lithium deposition on nickel substrates at elevated temperatures[J]. Journal of the Electrochemical Society, 2002, 149(4): A385-A390.
|
24 |
Byrne P, Fontes E, Parhammar O, et al. A simulation of the tertiary current density distribution from a chlorate cell(I): Mathematical model[J]. Journal of the Electrochemical Society, 2001, 148(10): D125-D132.
|
25 |
Pérez T, Nava J L. Numerical simulation of the primary, secondary and tertiary current distributions on the cathode of a rotating cylinder electrode cell: influence of using plates and a concentric cylinder as counter electrodes[J]. Journal of Electroanalytical Chemistry, 2014, 719: 106-112.
|
26 |
Kim G S, Merchant T, D’Urso J, et al. Systematic study of surface chemistry and comprehensive two-dimensional tertiary current distribution model for copper electrochemical deposition[J]. Journal of the Electrochemical Society, 2006, 153(11): C761-C772.
|
27 |
Suresh R, Rengaswamy R. Modeling and control of battery systems(I): Revisiting Butler-Volmer equations to model non-linear coupling of various capacity fade mechanisms[J]. Computers & Chemical Engineering, 2018, 119: 336-351.
|
28 |
Sokirko A V, Bark F H. Diffusion-migration transport in a system with Butler-Volmer kinetics, an exact solution[J]. Electrochimica Acta, 1995, 40(12): 1983-1996.
|
29 |
Pei A, Zheng G, Shi F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal[J]. Nano Letters, 2017, 17(2): 1132-1139.
|
30 |
Dreyer W, Guhlke C, Müller R. A new perspective on the electron transfer: recovering the Butler-Volmer equation in non-equilibrium thermodynamics[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 24966-24983.
|
31 |
Liu W, Lin D, Pei A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J]. Journal of the American Chemical Society, 2016, 138(47): 15443-15450.
|
32 |
Liu C, Liu L. Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization[J]. Journal of the Electrochemical Society, 2017, 164(11): E3254-E3264.
|
33 |
Lin X, Park J, Liu L, et al. A comprehensive capacity fade model and analysis for Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(10): A1701-A1710.
|
34 |
Bonino F, Scrosati B, Selvaggi A, et al. Electrode processes at the lithium-polymer electrolyte interface[J]. Journal of Power Sources, 1986, 18(1): 75-81.
|
35 |
Hughes M, Karunathilaka S, Hampson N A, et al. The faradaic impedance of the lithium-sulphur dioxide system. A kinetic interpretation[J]. Journal of Applied Electrochemistry, 1982, 12(5): 537-543.
|
36 |
Kim S P, van Duin A C T, Shenoy V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20): 8590-8597.
|
37 |
Yan J, Xia B J, Su Y C, et al. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53(24): 7069-7078.
|
38 |
Borodin O, Smith G D, Fan P. Molecular dynamics simulations of lithium alkyl carbonates[J]. The Journal of Physical Chemistry B, 2006, 110(45): 22773-22779.
|
39 |
Chen X R, Yao Y X, Yan C, et al. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries[J]. Angewandte Chemie, 2020, 132(20): 7817-7821.
|
40 |
Nishikawa K, Mori T, Nishida T, et al. Li dendrite growth and Li+ ionic mass transfer phenomenon[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 84-89.
|