化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4112-4130.DOI: 10.11949/0438-1157.20200551
收稿日期:
2020-05-09
修回日期:
2020-06-12
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
刘婷
作者简介:
田隆(1995—),男,硕士研究生,基金资助:
Long TIAN(),Ting LIU(),Kening SUN
Received:
2020-05-09
Revised:
2020-06-12
Online:
2020-09-05
Published:
2020-09-05
Contact:
Ting LIU
摘要:
氧化石墨烯膜具有超高的水通量、可控的层间距以及卓越的分离性能,这些优异的特性使氧化石墨烯膜有望成为新一代膜材料并用于水环境中物质的精确分离。对氧化石墨烯膜的研究已经取得了许多重要的成果,本文系统地阐述了用于水质净化的氧化石墨烯膜的结构特性和构效关系,总结了氧化石墨烯膜典型的制备方法,重点介绍了氧化石墨烯膜的改性方式,概述了氧化石墨烯膜在多种水环境中的应用,总结并展望了氧化石墨烯膜的发展方向,为设计和合成高性能氧化石墨烯膜用于水质净化提供新的思路。
中图分类号:
田隆, 刘婷, 孙克宁. 用于水质净化的氧化石墨烯膜研究进展[J]. 化工学报, 2020, 71(9): 4112-4130.
Long TIAN, Ting LIU, Kening SUN. Research progress of graphene oxide membrane for water purification[J]. CIESC Journal, 2020, 71(9): 4112-4130.
1 | Zhang R N, Liu Y N, He M R, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924. |
2 | Tao T, Xin K L. Public health: a sustainable plan for Chinas drinking water[J]. Nature News, 2014, 511(7511): 527-528. |
3 | Liu J G, Yang W. Water sustainability for China and beyond[J]. Science, 2012, 337(6095): 649-650. |
4 | Shannon M A, Bonn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
5 | 许浩, 顾凯峰, 李韵浩,等. 低截留分子量聚醚砜超滤膜[J]. 化工学报, 2019, 70(5): 1999-2006. |
Xu H, Gu K F, Li Y H, et al. Polyethersulfone ultrafiltration membrane with low molecular weight cut off[J]. CIESC Journal, 2019, 70(5): 1999-2006. | |
6 | Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application[J]. Environmental Science: Water Research & Technology, 2016, 2(1): 17-42. |
7 | 薛娟琴, 王森, 韩小龙, 等. 氧化石墨烯改性PVDF超滤膜制备及分离性能[J]. 化工学报, 2017, 68(9): 3466-3473. |
Xue J Q, Wang S, Han X L, et al. Preparation and separation performance of GO modified PVDF ultrafiltration membrane[J]. CIESC Journal, 2017, 68(9): 3466-3473. | |
8 | Liu Y, Wang N Y, Cao Z W, et al. Molecular sieving through interlayer galleries[J]. Journal of Materials Chemistry A, 2014, 2(5): 1235-1238. |
9 | Sun L W, Huang H B, Peng X S. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013, 49(91): 10718-10720. |
10 | Sun L W, Ying Y L, Huang H B, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes[J]. ACS Nano, 2014, 8(6): 6304-6311. |
11 | Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
12 | Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
13 | Chen C, Wang J M, Liu D, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nature Communications, 2018, 9(1): 1902. |
14 | Chen C, Liu D, Wang J M, et al. Functionalized boron nitride membranes with multipurpose and super-stable semi-permeability in solvents[J]. Journal of Materials Chemistry A, 2018, 6(42): 21104-21109. |
15 | Wang Y J, Liu L F, Xue J, et al. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid[J]. AIChE Journal, 2018, 64(6): 2181-2188. |
16 | Lan H C, Wang F, Lan M, et al. Hydrogen-bond-mediated self-assembly of carbon-nitride-based photo-fenton-like membranes for wastewater treatment[J]. Environmental Science & Technology, 2019, 53(12): 6981-6988. |
17 | Yang Y B, Yang X D, Liang L, et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science, 2019, 364(6445): 1057-1062. |
18 | 高克, 许中煌, 洪昱斌, 等. 氧化石墨烯-陶瓷复合纳滤膜的层层组装制备及其性能[J]. 化工学报, 2017, 68(5): 2177-2185. |
Gao K, Xu Z H, Hong Y B, et al. Layer-by-layer self-assembly preparation and performance of GO-ceramics composite nanofiltration membrane[J]. CIESC Journal, 2017, 68(5): 2177-2185. | |
19 | Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202. |
20 | Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10(1): 1253. |
21 | Xie Q, Alibakhshi M A, Jiao S P, et al. Fast water transport in graphene nanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245. |
22 | Sun P Z, Wang K L, Zhu H W. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications[J]. Advanced Materials, 2016, 28(12): 2287-2310. |
23 | Salehi H, Rastgar M, Shakeri A. Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide[J]. Applied Surface Science, 2017, 413: 99-108. |
24 | Han J L, Haider M R, Liu M J, et al. Borate inorganic cross-linked durable graphene oxide membrane preparation and membrane fouling control[J]. Environmental Science & Technology, 2019, 53(3): 1501-1508. |
25 | Zhang Y Z, Su K M, Li Z H. Graphene oxide composite membranes cross-linked with urea for enhanced desalting properties[J]. Journal of Membrane Science, 2018, 563: 718-725. |
26 | Qian Y L, Zhou C, Huang A S. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J]. Carbon, 2018, 136: 28-37. |
27 | You Y, Jin X H, Wen X Y, et al. Application of graphene oxide membranes for removal of natural organic matter from water[J]. Carbon, 2018, 129: 415-419. |
28 | Lu J J, Gu Y H, Chen Y, et al. Ultrahigh permeability of graphene-based membranes by adjusting D-spacing with poly (ethylene imine) for the separation of dye wastewater[J]. Separation and Purification Technology, 2019, 210: 737-745. |
29 | Hu X B, Yu Y, Zhou J R, et al. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane[J]. Journal of Membrane Science, 2015, 476: 200-204. |
30 | Pan F S, Li Y, Song Y M, et al. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations[J]. Journal of Membrane Science, 2020, 595: 117486. |
31 | Ran J, Chu C Q, Pan T, et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes[J]. Journal of Materials Chemistry A, 2019, 7(14): 8085-8091. |
32 | Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites[J]. Macromolecules, 2010, 43(16): 6515-6530. |
33 | Wang X, Zhao Y T, Tian E L, et al. Graphene oxide-based polymeric membranes for water treatment[J]. Advanced Materials Interfaces, 2018, 5(15): 1701427. |
34 | Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700. |
35 | An D, Yang L, Wang T J, et al. Separation performance of graphene oxide membrane in aqueous solution[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4803-4810. |
36 | Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. |
37 | Lim M Y, Choi Y S, Shin H, et al. Cross-linked graphene oxide membrane functionalized with self-cross-linkable and bactericidal cardanol for oil/water separation[J]. ACS Applied Nano Materials, 2018, 1(6): 2600-2608. |
38 | Wang S F, Mahalingam D, Sutisna B, et al. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration[J]. Journal of Materials Chemistry A, 2019, 7(19): 11673-11682. |
39 | Xu W L, Fang C, Zhou F L, et al. Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification[J]. Nano Letters, 2017, 17(5): 2928-2933. |
40 | Yang T S, Lin H, Loh K P, et al. Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation[J]. Chemistry of Materials, 2019, 31(6): 1829-1846. |
41 | Homaeigohar S, Elbahri M. Graphene membranes for water desalination[J]. NPG Asia Materials, 2017, 9(8): e427. |
42 | Wei N, Peng X S, Xu Z P. Understanding water permeation in graphene oxide membranes[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5877-5883. |
43 | Huang L, Li Y R, Zhou Q Q, et al. Graphene oxide membranes with tunable semipermeability in organic solvents[J]. Advanced Materials, 2015, 27(25): 3797-3802. |
44 | Liu N, Zhang M, Zhang W F, et al. Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2015, 3(40): 20113-20117. |
45 | Zhang M C, Mao Y Y, Liu G Z, et al. Molecular bridges stabilize graphene oxide membranes in water[J]. Angewandte Chemie International Edition, 2020, 59(4): 1689-1695. |
46 | Zhang M C, Sun J J, Mao Y Y, et al. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes[J]. Journal of Membrane Science, 2019, 574: 196-204. |
47 | Liu Z C, Wu W F, Liu Y, et al. A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation[J]. Separation and Purification Technology, 2018, 199: 37-46. |
48 | Liu T, Liu X X, Graham N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. Journal of Membrane Science, 2020, 593: 117431. |
49 | Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100. |
50 | Chong J Y, Wang B, Mattevi C, et al. Dynamic microstructure of graphene oxide membranes and the permeation flux[J]. Journal of Membrane Science, 2018, 549: 385-392. |
51 | Nair R R, Wu H G, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 335(6067): 442-444. |
52 | Yang J J, Gong D, Li G H, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16): 1705775. |
53 | Choi W, Choi J, Bang J, et al. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12510-12519. |
54 | Zhang J G, Xu Z W, Shan M J, et al. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes[J]. Journal of Membrane Science, 2013, 448: 81-92. |
55 | Mokkapati V R, Koseogluimer D Y, Yilmazdeveci N, et al. Membrane properties and anti-bacterial/anti-biofouling activity of polysulfone-graphene oxide composite membranes phase inversed in graphene oxide non-solvent[J]. RSC Advances, 2017, 7(8): 4378-4386. |
56 | Zhao Y Y, Lu J Q, Liu X Y, et al. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide[J]. Journal of Colloid and Interface Science, 2016, 480: 1-8. |
57 | Xu Z W, Wu T F, Shi J, et al. Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18418-18429. |
58 | Lee J, Chae H R, Won Y J, et al. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment[J]. Journal of Membrane Science, 2013, 448: 223-230. |
59 | Hu R R, Zhang R J, He Y J, et al. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization[J]. Journal of Membrane Science, 2018, 564: 813-819. |
60 | Nie L, Goh K, Wang Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Science Advances, 2020, 6(17): eaaz9184. |
61 | Mo Y H, Zhao X, Shen Y X. Cation-dependent structural instability of graphene oxide membranes and its effect on membrane separation performance[J]. Desalination, 2016, 399: 40-46. |
62 | Liu T, Yang B, Graham N, et al. Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment[J]. Journal of Membrane Science, 2017, 542: 31-40. |
63 | Thebo K H, Qian X T, Zhang Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9(1): 1486. |
64 | Hu M, Mi B X. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715-3723. |
65 | Nan Q, Li P, Cao B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination[J]. Applied Surface Science, 2016, 387: 521-528. |
66 | Wang T, Lu J R, Mao L L, et al. Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane[J]. Journal of Membrane Science, 2016, 515: 125-133. |
67 | Chang X J, Wang Z X, Quan S, et al. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance[J]. Applied Surface Science, 2014, 316: 537-548. |
68 | Hu R R, He Y J, Zhang C M, et al. Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25632-25640. |
69 | Perreault F, Faria A F, Elimelech M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16): 5861-5896. |
70 | Ohern S C, Stewart C A, Boutilier M S, et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene[J]. ACS Nano, 2012, 6(11): 10130-10138. |
71 | Kannam S K, Todd B D, Hansen J S, et al. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations[J]. Journal of Chemical Physics, 2012, 136(2): 024705. |
72 | Sun P Z, Liu H, Wang K L, et al. Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling[J]. Chemical Communications, 2015, 51(15): 3251-3254. |
73 | Ai X Y, Zhang P P, Dou Y, et al. Graphene oxide membranes with hierarchical structures used for molecule sieving[J]. Separation and Purification Technology, 2020, 230: 115879. |
74 | Chen B, Jiang H F, Liu X, et al. Observation and analysis of water transport through graphene oxide interlamination[J]. Journal of Physical Chemistry C, 2017, 121(2): 1321-1328. |
75 | Wang F, You Y, Jin X H, et al. On the role of driving force in water transport through nanochannels within graphene oxide laminates[J]. Nanoscale, 2018, 10(46): 21625-21628. |
76 | Meng N, Zhao W, Shamsaei E, et al. A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine[J]. Journal of Membrane Science, 2018, 548: 363-371. |
77 | Liu T, Tian L, Graham N, et al. Regulating the interlayer spacing of graphene oxide membranes and enhancing their stability by use of PACl[J]. Environmental Science & Technology, 2019, 53(20): 11949-11959. |
78 | Jin L M, Wang Z Y, Zheng S X, et al. Polyamide-crosslinked graphene oxide membrane for forward osmosis[J]. Journal of Membrane Science, 2018, 545: 11-18. |
79 | Hung W S, Tsou C H, De Guzman M, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing[J]. Chemistry of Materials, 2014, 26(9): 2983-2990. |
80 | Song Y M, Li R, Pan F S, et al. Ultrapermeable graphene oxide membranes with tunable interlayer distances via vein-like supramolecular dendrimers[J]. Journal of Materials Chemistry A, 2019, 7(31): 18642-18652. |
81 | Sun J Q, Hu C Z, Liu Z T, et al. Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity[J]. Carbon, 2019, 145: 140-148. |
82 | Zhang P, Gong J L, Zeng G M, et al. Ultrathin reduced graphene oxide/MOF nanofiltration membrane with improved purification performance at low pressure[J]. Chemosphere, 2018, 204: 378-389. |
83 | Yeh C N, Raidongia K, Shao J J, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry, 2014, 7(2): 166-170. |
84 | Jia Z Q, Wang Y, Shi W X, et al. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation[J]. Journal of Membrane Science, 2016, 520: 139-144. |
85 | Qian Y L, Zhang X L, Liu C Y, et al. Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance[J]. Desalination, 2019, 460: 56-63. |
86 | Parsamehr P S, Zahed M, Tofighy M A, et al. Preparation of novel cross-linked graphene oxide membrane for desalination applications using (EDC and NHS)-activated graphene oxide and PEI[J]. Desalination, 2019, 468: 114079. |
87 | Crowley P B, Golovin A. Cation-π interactions in protein-protein interfaces[J]. Proteins, 2005, 59(2): 231-239. |
88 | Long Y, Wang K, Xiang G L, et al. Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors[J]. Advanced Materials, 2017, 29(16): 1606093. |
89 | Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. |
90 | Yu W Z, Yu T, Graham N. Development of a stable cation modified graphene oxide membrane for water treatment[J]. 2D Materials, 2017, 4(4): 045006. |
91 | Sun P Z, Zheng F, Zhu M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions[J]. ACS Nano, 2014, 8(1): 850-859. |
92 | Zheng S X, Mi B X. Emerging investigators series: silica-crosslinked graphene oxide membrane and its unique capability in removing neutral organic molecules from water[J]. Environmental Science: Water Research & Technology, 2016, 2(4): 717-725. |
93 | Li W B, Wu W F, Li Z J. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation[J]. ACS Nano, 2018, 12(9): 9309-9317. |
94 | Liu J C, Wang N, Yu L J, et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation[J]. Nature Communications, 2017, 8(1): 2011. |
95 | Huang H, Joshi R K, De Silva K K, et al. Fabrication of reduced graphene oxide membranes for water desalination[J]. Journal of Membrane Science, 2019, 572: 12-19. |
96 | Fan X T, Cai C B, Gao J, et al. Hydrothermal reduced graphene oxide membranes for dyes removing[J]. Separation and Purification Technology, 2020, 241: 116730. |
97 | Zhang Q, Qian X T, Thebo K H, et al. Controlling reduction degree of graphene oxide membranes for improved water permeance[J]. Science Bulletin, 2018, 63(12): 788-794. |
98 | Han R Y, Wu P Y. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene[J]. Journal of Materials Chemistry A, 2019, 7(11): 6475-6481. |
99 | Zhang P, Gong J L, Zeng G M, et al. Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure[J]. Journal of Membrane Science, 2019, 574: 112-123. |
100 | Kong G D, Pang J, Tang Y C, et al. Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing[J]. Journal of Materials Chemistry A, 2019, 7(42): 24301-24310. |
101 | Liu L F, Zhou Y S, Xue J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification[J]. AIChE Journal, 2019, 65(10): 16699. |
102 | Ma J, He Y, Shi H, et al. Stable graphene oxide-based composite membranes intercalated with montmorillonite nanoplatelets for water purification[J]. Journal of Materials Science, 2019, 54(3): 2241-2255. |
103 | Kang K M, Kim D W, Ren C E, et al. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44687-44694. |
104 | Yang G, Xie Z L, Cran M J, et al. Functionalizing graphene oxide framework membranes with sulfonic acid groups for superior aqueous mixture separation[J]. Journal of Materials Chemistry A, 2019, 7(34): 19682-19690. |
105 | Huang L, Chen J, Gao T T, et al. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration[J]. Advanced Materials, 2016, 28(39): 8669-8674. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[11] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[12] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[15] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||