化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5763-5773.DOI: 10.11949/0438-1157.20200613
收稿日期:
2020-05-19
修回日期:
2020-07-27
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
陈汉平
作者简介:
任喜熙(1994—),男,硕士研究生,基金资助:
REN Xixi(),CHEN Qi,YANG Haiping,ZHANG Shihong,WANG Xianhua,CHEN Hanping()
Received:
2020-05-19
Revised:
2020-07-27
Online:
2020-12-05
Published:
2020-12-05
Contact:
CHEN Hanping
摘要:
基于计算颗粒流体动力学(CPFD)建立了三维鼓泡流化床水蒸气-空气混合气化的数值模型,并进行了模型验证,结果表明模拟和实验具有良好的一致性。在该模型的基础上,研究了气化炉内气体分布以及温度分布;同时探究了生物质属性(颗粒粒径、含水率、种类)以及操作条件(气化温度、床料高度)对气化特性的影响。结果表明,生物质颗粒粒径对气化性能的影响存在一个最优值,平均粒径为0.6 mm是最佳的;较高的含水率会降低可燃气体产量,不利于气化反应的进行;四种生物质中,锯末气化的效率最高、可燃气体产量最大、气体热值最高,稻壳仅次于锯末但其碳转化率高于锯末;提高气化温度可以增加可燃气体的比例、提高气化效率;而初始床层高度的变化可以改变H2/CO的比例。本实验为生物质水蒸气/空气气化提供了理论参考,有助于生物质原料的选取和处理,也有助于气化炉的放大和优化。
中图分类号:
任喜熙,陈祁,杨海平,张世红,王贤华,陈汉平. 基于CPFD方法的流化床生物质气化数值模拟[J]. 化工学报, 2020, 71(12): 5763-5773.
REN Xixi,CHEN Qi,YANG Haiping,ZHANG Shihong,WANG Xianhua,CHEN Hanping. Numerical simulation of 3D fluidized bed biomass gasification based on CPFD[J]. CIESC Journal, 2020, 71(12): 5763-5773.
元素分析/%(mass, dry) | 工业分析/%(mass, dry) | HHV/ (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | S | O | FC | V | M | Ash | |
38.43 | 2.97 | 0.49 | 0.07 | 36.36 | 14.99 | 55.54 | 9.95 | 19.52 | 15.68 |
表1 稻壳的工业分析和元素分析
Table 1 Proximate analysis and ultimate analysis of rice husk
元素分析/%(mass, dry) | 工业分析/%(mass, dry) | HHV/ (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | S | O | FC | V | M | Ash | |
38.43 | 2.97 | 0.49 | 0.07 | 36.36 | 14.99 | 55.54 | 9.95 | 19.52 | 15.68 |
名称 | 控制方程 |
---|---|
连续性方程 | |
动量方程 | |
组分输运方程 | |
能量守恒方程 | |
颗粒运动方程 | |
颗粒碰撞模型 | |
颗粒能量传递模型 |
表2 控制方程[18-19,21]
Table 2 Governing equations[18-19,21]
名称 | 控制方程 |
---|---|
连续性方程 | |
动量方程 | |
组分输运方程 | |
能量守恒方程 | |
颗粒运动方程 | |
颗粒碰撞模型 | |
颗粒能量传递模型 |
反应名称 | 化学方程式 | 化学反应速率表达式 |
---|---|---|
焦炭燃烧R1 | ||
二氧化碳气化R2 | ||
水蒸气气化R3 | ||
甲烷化反应R4 |
表3 非均相动力学参数及其表达式[18-19]
Table 3 Heterogeneous kinetic parameters and expressions[18-19]
反应名称 | 化学方程式 | 化学反应速率表达式 |
---|---|---|
焦炭燃烧R1 | ||
二氧化碳气化R2 | ||
水蒸气气化R3 | ||
甲烷化反应R4 |
反应名称 | 化学方程式 | 化学反应速率表达式 |
---|---|---|
一氧化碳燃烧R5 | ||
氢气燃烧R6 | ||
甲烷燃烧R7 | ||
甲烷与蒸汽反应R8 | ||
水煤气转化反应R9 |
表4 均相动力学参数及其表达式[6,18-19,25]
Table 4 Homogeneous kinetic parameters and their expressions[6,18-19,25]
反应名称 | 化学方程式 | 化学反应速率表达式 |
---|---|---|
一氧化碳燃烧R5 | ||
氢气燃烧R6 | ||
甲烷燃烧R7 | ||
甲烷与蒸汽反应R8 | ||
水煤气转化反应R9 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
生物质入口质量流率/(kg/h) | 0.3 | 时间步长(Δt)/s-1 | 0.0001 |
生物质颗粒直径/mm | 0.25~0.35 | 粒子与壁面的法线动量保留系数,en | 0.3 |
生物质颗粒密度/(kg/m3) | 750 | 粒子与壁面的切线动量保留系数,et | 0.99 |
焦炭密度/(kg/m3) | 1300 | 固相应力模型的无量纲常数,β | 3 |
沙粒密度/(kg/m3) | 2300 | 固相应力模型的无量纲常数,σ | 10-8 |
气化温度/℃ | 800 | 固相最大堆积密度下的体积分数,αcp | 0.6 |
压力/Pa | 101325 | 碰撞最大动量重定向,ξ | 40% |
表5 模拟的边界条件和参数[7,15,18,27-29]
Table 5 Simulated boundary conditions and parameters[7,15,18,27-29]
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
生物质入口质量流率/(kg/h) | 0.3 | 时间步长(Δt)/s-1 | 0.0001 |
生物质颗粒直径/mm | 0.25~0.35 | 粒子与壁面的法线动量保留系数,en | 0.3 |
生物质颗粒密度/(kg/m3) | 750 | 粒子与壁面的切线动量保留系数,et | 0.99 |
焦炭密度/(kg/m3) | 1300 | 固相应力模型的无量纲常数,β | 3 |
沙粒密度/(kg/m3) | 2300 | 固相应力模型的无量纲常数,σ | 10-8 |
气化温度/℃ | 800 | 固相最大堆积密度下的体积分数,αcp | 0.6 |
压力/Pa | 101325 | 碰撞最大动量重定向,ξ | 40% |
Size/μm | Mass fraction/% |
---|---|
<250 | 2.5 |
250—400 | 8.3 |
400—500 | 18.7 |
500—600 | 56.5 |
600—700 | 9.4 |
>700 | 4.6 |
表6 沙粒粒径分布
Table 6 Sand particle size distribution
Size/μm | Mass fraction/% |
---|---|
<250 | 2.5 |
250—400 | 8.3 |
400—500 | 18.7 |
500—600 | 56.5 |
600—700 | 9.4 |
>700 | 4.6 |
原料 | 气体成分/%(体积) | ||||
---|---|---|---|---|---|
H2 | CO2 | H2O | CH4 | CO | |
稻壳 | 1.72 | 23.27 | 8.04 | 13.58 | 53.39 |
锯末 | 1.71 | 25.86 | 11.60 | 12.24 | 48.59 |
树皮 | 1.80 | 30.80 | 9.31 | 11.48 | 46.61 |
玉米秸秆 | 1.86 | 28.27 | 11.29 | 12.58 | 45.99 |
表7 热解实验的气体组成
Table 7 Gas composition of pyrolysis experiment
原料 | 气体成分/%(体积) | ||||
---|---|---|---|---|---|
H2 | CO2 | H2O | CH4 | CO | |
稻壳 | 1.72 | 23.27 | 8.04 | 13.58 | 53.39 |
锯末 | 1.71 | 25.86 | 11.60 | 12.24 | 48.59 |
树皮 | 1.80 | 30.80 | 9.31 | 11.48 | 46.61 |
玉米秸秆 | 1.86 | 28.27 | 11.29 | 12.58 | 45.99 |
原料 | 元素分析/%(mass) | 工业分析/%(mass) | LHV/ (MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cad | Had | Oad | Nad | Sad | Mad | FCad | Vad | Aad | Mad | ||
稻壳 | 40.11 | 5.28 | 35.59 | 0.32 | 0.07 | 6.2 | 15.65 | 65.7 | 12.45 | 6.2 | 15.55 |
锯末 | 45.82 | 5.63 | 38.69 | 0.32 | 0.12 | 8.91 | 16 | 74.59 | 0.5 | 8.91 | 16.91 |
树皮 | 38.39 | 5.03 | 31.41 | 0.53 | 0.11 | 11.6 | 14.64 | 60.83 | 12.93 | 11.6 | 14.5 |
玉米秸秆 | 30.64 | 4.07 | 29.9 | 0.87 | 0.1 | 8.6 | 16.71 | 48.87 | 25.82 | 8.6 | 11.12 |
表8 四种生物质的工业分析和元素分析
Table 8 Industrial analysis and elemental analysis of the four biomass
原料 | 元素分析/%(mass) | 工业分析/%(mass) | LHV/ (MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cad | Had | Oad | Nad | Sad | Mad | FCad | Vad | Aad | Mad | ||
稻壳 | 40.11 | 5.28 | 35.59 | 0.32 | 0.07 | 6.2 | 15.65 | 65.7 | 12.45 | 6.2 | 15.55 |
锯末 | 45.82 | 5.63 | 38.69 | 0.32 | 0.12 | 8.91 | 16 | 74.59 | 0.5 | 8.91 | 16.91 |
树皮 | 38.39 | 5.03 | 31.41 | 0.53 | 0.11 | 11.6 | 14.64 | 60.83 | 12.93 | 11.6 | 14.5 |
玉米秸秆 | 30.64 | 4.07 | 29.9 | 0.87 | 0.1 | 8.6 | 16.71 | 48.87 | 25.82 | 8.6 | 11.12 |
1 | Cheng Y, Thow Z, Wang C H. Biomass gasification with CO2 in a fluidized bed[J]. Powder Technology, 2016, 296: 87-101. |
2 | 虞君武, 何榕, 张衍国. 鼓泡流化床中生物质气化的数值模拟[J]. 燃烧科学与技术, 2014, (6): 471-477. |
Yu J W, He R, Zhang Y G. Numerical simulation of biomass gasification in bubbling fluidized bed[J]. Journal of Combustion Science and Technology, 2014, (6): 471-477. | |
3 | 苏德仁, 刘华财, 周肇秋, 等. 生物质流化床氧气-水蒸气气化实验研究[J]. 燃料化学学报, 2012, 40(3): 309-314. |
Su D R, Liu H C, Zhou Z Q, et al. Experimental study on oxygen-water vaporization of biomass fluidized bed[J]. Journal of Fuel Chemistry, 2012, 40(3): 309-314. | |
4 | Gerber S, Behrendt F, Oevermann M. An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material[J]. Fuel, 2010, 89(10): 2903-2917. |
5 | Yu X, Blanco P H, Makkawi Y, et al. CFD and experimental studies on a circulating fluidised bed reactor for biomass gasification[J]. Chemical Engineering and Processing-Process Intensification, 2018(130): 284-295. |
6 | Eri Q, Peng J, Zhao X. CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model[J]. Applied Thermal Engineering, 2018, 129: 1358-1368. |
7 | Kraft S, Kirnbauer F, Hofbauer H. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input[J]. Applied Energy, 2017, 190: 408-420. |
8 | Radmanesh R, Chaouki J, Guy C. Biomass gasification in a bubbling fluidized bed reactor: experiments and modeling[J]. AIChE Journal, 2006, 52(12): 4258-4272. |
9 | Shayan E, Zare V, Mirzaee I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents[J]. Energy Conversion and Management, 2018, 159: 30-41. |
10 | Fremaux S, Beheshti S M, Ghassemi H, et al. An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed[J]. Energy Conversion and Management, 2015, 91: 427-432. |
11 | Pauls J H, Mahinpey N, Mostafavi E. Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using Aspen Plus: a comprehensive model including pyrolysis, hydrodynamics and tar production[J]. Biomass and Bioenergy, 2016, 95: 157-166. |
12 | 车德勇, 李少华, 韩宁宁, 等. 生物质流化床空气-水蒸气气化模拟[J]. 中国电机工程学报, 2012, 32(35): 101-106. |
Che D Y, Li S H, Han N N, et al. Simulation of air-water vaporization of biomass fluidized bed[J]. Proceedings of the CSEE, 2012, 32(35): 101-106. | |
13 | Zhao L, Lu Y. Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: a CFD-DEM study[J]. The Journal of Supercritical Fluids, 2018, 131: 26-36. |
14 | Cardoso J, Silva V, Eusébio D, et al. Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor[J]. Renewable Energy, 2019, 131: 713-729. |
15 | Di Nardo A, Calchetti G, Stendardo S. Modeling and simulation of an oxygen-blown bubbling fluidized bed gasifier using the computational particle-fluid dynamics (CPFD) approach[J]. Journal of Applied Fluid Mechanics, 2018, 11(4): 825-834. |
16 | Xie J, Zhong W, Jin B, et al. Eulerian–Lagrangian method for three-dimensional simulation of fluidized bed coal gasification[J]. Advanced Powder Technology, 2013, 24(1): 382-392. |
17 | Loha C, Chattopadhyay H, Chatterjee P K. Energy generation from fluidized bed gasification of rice husk[J]. Journal of Renewable & Sustainable Energy, 2013, 5(4): 1367-1377. |
18 | Loha C, Chattopadhyay H, Chatterjee P K. Three dimensional kinetic modeling of fluidized bed biomass gasification[J]. Chemical Engineering Science, 2014, 109(16): 53-64. |
19 | Snider D M, Clark S M, Rourke P J. Eulerian–Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers[J]. Chemical Engineering Science, 2011, 66(6): 1285-1295. |
20 | Smagorinsky J S. General circulation experiments with the primitive equations (I): The basic experiment[J]. Monthly Weather Review, 1963, ( 91): 99-164. |
21 | Wang S, Luo K, Hu C, et al. Impact of operating parameters on biomass gasification in a fluidized bed reactor: an Eulerian-Lagrangian approach[J]. Powder Technology, 2018, 333: 304-316. |
22 | Gungor A. Two-dimensional biomass combustion modeling of CFB[J]. Fuel, 2008, 87(8): 1453-1468. |
23 | Thapa R K, Pfeifer C, Halvorsen B M. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor[J]. Energy and Environment, 2014, 5(1): 35-44. |
24 | de Souza-Santos M L. Comprehensive modelling and simulation of fluidized bed boilers and gasifiers[J]. Fuel, 1989, 68(12): 1507-1521. |
25 | Gómez-barea A, Leckner B. Modeling of biomass gasification in fluidized bed[J]. Progress in Energy & Combustion Science, 2010, 36(4): 444-509. |
26 | Gonzalo C. Kinetics of CO2 gasification for coals of different ranks under oxy-combustion conditions[J]. Combustion & Flame, 2013, 160(2): 411-416. |
27 | Chen C, Werther J, Heinrich S, et al. CPFD simulation of circulating fluidized bed risers[J]. Powder Technology, 2013, 235: 238-247. |
28 | Abbasi A, Ege P E, de Lasa H I. CPFD simulation of a fast fluidized bed steam coal gasifier feeding section[J]. Chemical Engineering Journal, 2011, 174(1): 341-350. |
29 | Ku X, Li T, Løvås T. Influence of drag force correlations on periodic fluidization behavior in Eulerian-Lagrangian simulation of a bubbling fluidized bed[J]. Chemical Engineering Science, 2013, 95: 94-106. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[13] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||