化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5025-5034.DOI: 10.11949/0438-1157.20200797
收稿日期:
2020-06-22
修回日期:
2020-09-08
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
王学斌
作者简介:
李鑫健(1996—),女,硕士研究生,2014—2018年在南京大学获学士学位,2018年至今在南京大学攻读硕士学位,基金资助:
Xinjian LI(),Baolu WANG,Tian GAO,Qi WANG,Xuebin WANG()
Received:
2020-06-22
Revised:
2020-09-08
Online:
2020-11-05
Published:
2020-11-05
Contact:
Xuebin WANG
摘要:
石墨烯基超级电容器,其功率密度较高,但能量密度受限。开发以三维石墨烯材料为载体的复合型赝电容多孔电极,是解决方案之一。本文采用铵盐辅助化学发泡法,制备了三维筋撑石墨烯泡沫体(SG);以SG为载体,采用水热还原法在其表面生长二氧化锰(MnO2)纳米棒阵列,从而构建了MnO2/SG自支撑多孔材料。利用MnO2/SG复合电极,组装了超级电容器,在0.5 A·g-1的电流密度下,比电容达343.6 F·g-1;经5000次循环,其容量保持率为83.8%;在500 W·kg-1的功率密度下,其能量密度达11.93 W·h·kg-1。因此,MnO2/SG复合电极是一种性能优异的赝电容材料,在电化学储能领域有良好的应用前景。
中图分类号:
李鑫健,王保禄,高天,王旗,王学斌. 三维筋撑石墨烯负载氧化锰的超级电容器[J]. 化工学报, 2020, 71(11): 5025-5034.
Xinjian LI,Baolu WANG,Tian GAO,Qi WANG,Xuebin WANG. Three-dimensional strutted graphene loading manganese oxide for supercapacitor[J]. CIESC Journal, 2020, 71(11): 5025-5034.
图3 SG的SEM图[(a)、(b)];不同水热反应时长下获得的MnO2/SG产品的SEM图[(c)~(f)]
Fig.3 SEM images of SG[(a),(b)]; SEM images of MnO2/SG samples obtained at different hydrothermal time[(c)—(f)]
电极材料 | 电流/ (A·g-1) | 比电容量/ (F·g-1) | 文献 |
---|---|---|---|
MnO2/3DG | 0.25 | 236 | [ |
MnO2/R-GO@Ni-foam | 0.25 | 267 | [ |
MnO2/Graphene paper | 0.5 | 256 | [ |
MnO2/GH | 0.5 | 293.7 | [ |
MnO2/rGO/Ni foam | 0.5 | 288 | [ |
MnO2/3DHG | 0.5 | 192.2 | [ |
MnO2-rGO-CNTs | 0.6 | 124 | [ |
MnO2/GH | 1 | 200.6 | [ |
MnO2/GA | 1 | 275 | [ |
MnO2/SG | 0.5 | 348.5 | this work |
表1 二氧化锰和三维石墨烯复合电极材料的性能对比
Table 1 Comparison of capacitance of manganese oxide and three dimensional graphene hybrid materials
电极材料 | 电流/ (A·g-1) | 比电容量/ (F·g-1) | 文献 |
---|---|---|---|
MnO2/3DG | 0.25 | 236 | [ |
MnO2/R-GO@Ni-foam | 0.25 | 267 | [ |
MnO2/Graphene paper | 0.5 | 256 | [ |
MnO2/GH | 0.5 | 293.7 | [ |
MnO2/rGO/Ni foam | 0.5 | 288 | [ |
MnO2/3DHG | 0.5 | 192.2 | [ |
MnO2-rGO-CNTs | 0.6 | 124 | [ |
MnO2/GH | 1 | 200.6 | [ |
MnO2/GA | 1 | 275 | [ |
MnO2/SG | 0.5 | 348.5 | this work |
1 | Xia J, Chen F, Li J, et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology, 2009, 4(8): 505-509. |
2 | Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14: 271-279. |
3 |
Huang H B, Shi H D, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.201909035.
DOI URL |
4 | Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors[J]. Journal of Chemical Sciences, 2008, 120(1): 9-13. |
5 | Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
6 |
高天, 肖庆林, 许晨阳, 等. 发泡法制备二维材料泡沫体的进展[J]. 无机材料学报, 2020, doi: 10.15541/jim20200096.
DOI URL |
Gao T, Xiao Q L, Xu C Y, et al. Blowing route to fabricate foams of 2D materials[J]. Journal of Inorganic Materials, 2020, doi: 10.15541/jim20200096.
DOI URL |
|
7 | Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330. |
8 | Choi B G, Yang M H, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano, 2012, 6(5): 4020-4028. |
9 | Zhu C, Han T Y J, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6: 6962. |
10 | Shao Y L, El-Kady M F, Lin C W, et al. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors[J]. Advanced Materials, 2016, 28(31): 6719-6726. |
11 | Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10: 424-428. |
12 | Zhao J, Lai H W, Lyu Z Y, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials, 2015, 27(23): 3541-3545. |
13 | Li N, Yang G Z, Sun Y, et al. Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a NaCl template for flexible transparent and stretchable solid-state supercapacitors[J]. Nano Letters, 2015, 15(5): 3195-3203. |
14 | Wang X B, Zhang Y J, Zhi C Y, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4: 2905. |
15 | El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. |
16 | Jiang X F, Li R Q, Hu M, et al. Zinc-tiered synthesis of 3D graphene for monolithic electrodes[J]. Advanced Materials, 2019, 31(25): 1901186. |
17 | Wang C W, Wang Y, Graser J, et al. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis[J]. ACS Nano, 2013, 7(12): 11156-11165. |
18 | Ge J, Yao H B, Hu W, et al. Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes[J]. Nano Energy, 2013, 2(4): 505-513. |
19 | Xie L J, Su F Y, Xie L F, et al. Self-assembled 3D graphene-based aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode[J]. ChemSusChem, 2015, 8(17): 2917-2926. |
20 | Qiu B C, Xing M Y, Zhang J L. Stöber-like method to synthesize ultralight, porous, stretchable Fe2O3/graphene aerogels for excellent performance in photo-Fenton reaction and electrochemical capacitors[J]. Journal of Materials Chemistry A, 2015, 3(24): 12820-12827. |
21 | Meng X Q, Zhu J W, Bi H P, et al. Three-dimensional nickel hydroxide/graphene composite hydrogels and their transformation to NiO/graphene composites for energy storage[J]. Journal of Materials Chemistry A, 2015, 3(43): 21682-21689. |
22 | Patil U M, Nam M S, Sohn J S, et al. Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(44): 19075-19083. |
23 | Park H, Kim J W, Hong S Y, et al. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors[J]. Advanced Functional Materials, 2018, 28(33): 1707013. |
24 | Zhang Q E, Zhou A A, Wang J J, et al. Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites[J]. Energy & Environmental Science, 2017, 10(11): 2372-2382. |
25 | Fic K, Lota G, Meller M, et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J]. Energy & Environmental Science, 2012, 5(2): 5842-5850. |
26 | Wu Q, Yang L J, Wang X Z, et al. Carbon-based nanocages: a new platform for advanced energy storage and conversion[J]. Advanced Materials, 2020, 32(27): 1904177. |
27 | Wang J G, Kang F Y, Wei B Q. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74: 51-124. |
28 | Wei B, Wang L, Wang Y, et al. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors[J]. Journal of Power Sources, 2016, 307: 129-137. |
29 | Wagner C D, Zatko D A, Raymond R H. Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis[J]. Analytical Chemistry, 1980, 52(9): 1445-1451. |
30 | Beng J T, Kenneth J K, Peter M A S. XPS studies of solvated metal atom dispersed catalysts. Evidence for layered cobalt-manganese particles on alumina and silica[J]. Journal of the American Chemical Society, 1991, 113(3): 855-861. |
31 | Meng X, Lu L, Sun C. Green synthesis of three-dimensional MnO2/graphene hydrogel composite as a high-performance electrode material for supercapacitors [J]. ACS Applied Materials & Interfaces, 2018, 10: 11474-11481. |
32 | Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7: 845-854. |
33 | Zhu X L, Zhang P, Xu S, et al. Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11665-11674. |
34 | Li Y, Wang G, Ye K, et al. Facile preparation of three-dimensional multilayer porous MnO2/reduced graphene oxide composite and its supercapacitive performance[J]. Journal of Power Sources, 2014, 271: 582-588. |
35 | Li Z P, Mi Y J, Liu X H, et al. Flexible graphene/MnO2 composite papers for supercapacitor electrodes[J]. Journal of Materials Chemistry, 2011, 21(38): 14706-14711. |
36 | Yang B Y, Jin X, Wang Y, et al. In-situ growth of flower-like MnO2/graphene hydrogel mesoporous electrode material for supercapacitors[J]. Integrated Ferroelectrics, 2020, 206(1): 87-95. |
37 | Zhao Z Y, Shen T, Liu Z H, et al. Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2020, 812: 152124. |
38 | Chai Y Q, Li Z P, Wang J Q, et al. Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors[J]. Journal of Alloys and Compounds, 2019, 775: 1206-1212. |
39 | Rogier C, Pognon G, Bondavalli P, et al. Electrodeposition of MnO2 on spray-coated nanostructured carbon framework as high performance material for energy storage[J]. Surface & Coatings Technology, 2020, 384: 125310. |
40 | Ma C X, Wang R X, Tetik H, et al. Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems[J]. Nano Energy, 2019, 66: 104124. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[7] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[8] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[9] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[10] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[11] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[12] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[13] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[14] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[15] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||