化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1217-1229.DOI: 10.11949/0438-1157.20200874
收稿日期:
2020-07-02
修回日期:
2020-09-05
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
刘海峰
作者简介:
沈晓波(1986—),男,博士,副教授,基金资助:
SHEN Xiaobo1(),ZHANG Xuening1,LIU Haifeng2,3()
Received:
2020-07-02
Revised:
2020-09-05
Online:
2021-03-05
Published:
2021-03-05
Contact:
LIU Haifeng
摘要:
氢能作为新能源领域的“明日之星”,已经逐步在全球范围内发展与推广。然而,安全性依然是氢能全生命周期的关键瓶颈问题,高压又是其中最为突出的风险要素,容易引发氢气泄漏、扩散,甚至燃烧、爆炸等重大安全事故。基于此,重点总结了高压氢气泄漏扩散、泄漏自燃、喷射火和气云爆炸等典型事故演化过程及内在机理的研究现状并归纳了当前的不足之处,提出了未来发展方向,对氢能安全科学研究及事故防控具有指导意义。
中图分类号:
沈晓波, 章雪凝, 刘海峰. 高压氢气泄漏相关安全问题研究与进展[J]. 化工学报, 2021, 72(3): 1217-1229.
SHEN Xiaobo, ZHANG Xuening, LIU Haifeng. Research and progress on safety issues related to high-pressure hydrogen leakage[J]. CIESC Journal, 2021, 72(3): 1217-1229.
物质 | 相对泄漏率 | 流动参数(0℃,101.3 kPa(标况)) | ||||
---|---|---|---|---|---|---|
扩散 | 层流 | 湍流 | 空气中的扩散系数/(cm2·s-1) | 密度/(kg·m-3) | 动力黏度/(Pa·s) | |
甲烷 | 1.0 | 1.0 | 1.0 | 0.223 | 0.717 | 10.3 |
氢气 | 3.8 | 1.26 | 2.83 | 0.611 | 0.08985 | 8.42 |
丙烷 | 0.63 | 1.38 | 0.6 | 0.121(丙烷为主的液化石油气) | 2.02 | 7.95(18℃) |
表1 氢气的相对泄漏率及流动参数
Table 1 Relative leakage rate and flow parameters of hydrogen
物质 | 相对泄漏率 | 流动参数(0℃,101.3 kPa(标况)) | ||||
---|---|---|---|---|---|---|
扩散 | 层流 | 湍流 | 空气中的扩散系数/(cm2·s-1) | 密度/(kg·m-3) | 动力黏度/(Pa·s) | |
甲烷 | 1.0 | 1.0 | 1.0 | 0.223 | 0.717 | 10.3 |
氢气 | 3.8 | 1.26 | 2.83 | 0.611 | 0.08985 | 8.42 |
丙烷 | 0.63 | 1.38 | 0.6 | 0.121(丙烷为主的液化石油气) | 2.02 | 7.95(18℃) |
燃料 | 分子式 | 燃烧极限/ %(vol) | 最低点火能/mJ | 燃烧速度/(m·s-1) | 引燃 温度/℃ |
---|---|---|---|---|---|
氢气 | H2 | 4.1~74.1 | 0.02 | 2.1 | 400 |
甲烷 | CH4 | 5.3~15 | 0.3 | 0.4 | 538 |
汽油 | C4~C12 | 1.3~6.0 | 0.3 | 0.3 | 415~530 |
表2 氢气与甲烷、汽油的燃烧特性对比
Table 2 Combustion characteristics of hydrogen, methane, and gasoline
燃料 | 分子式 | 燃烧极限/ %(vol) | 最低点火能/mJ | 燃烧速度/(m·s-1) | 引燃 温度/℃ |
---|---|---|---|---|---|
氢气 | H2 | 4.1~74.1 | 0.02 | 2.1 | 400 |
甲烷 | CH4 | 5.3~15 | 0.3 | 0.4 | 538 |
汽油 | C4~C12 | 1.3~6.0 | 0.3 | 0.3 | 415~530 |
组织 | 标准号 | 标准名称 |
---|---|---|
中国国家标准化管理委员(SAC) | GB/T 23751.1—2009 | 微型燃料电池发电系统 第1部分:安全 |
GB/T 24549—2009 | 燃料电池电动汽车安全要求 | |
GB/T 27748.1—2017 | 固定式燃料电池发电系统 第1部分:安全 | |
GB/T 29729—2013 | 氢系统安全的基本要求 | |
GB/T 30084—2013 | 便携式燃料电池发电系统安全 | |
GB/T 31036—2014 | 质子交换膜燃料电池备用电源系统安全 | |
GB/T 31037.1—2014 | 工业起升车辆用燃料电池发电系统 第1部分:安全 | |
GB/T 31139—2014 | 移动式加氢设施安全技术规范 | |
GB/T 34539—2017 | 氢氧发生器安全技术要求 | |
GB/T 34544—2017 | 小型燃料电池车用低压储氢装置安全试验方法 | |
GB/T 34583—2017 | 加氢站用储氢装置安全技术要求 | |
GB/T 34584—2017 | 加氢站安全技术规范 | |
GB/T 36288—2018 | 燃料电池电动汽车燃料电池堆安全要求 | |
国际标准化组织(ISO) | ISO/TR 15916:2015 | Basic considerations for the safety of hydrogen systems |
ISO 16110—1:2007 | Hydrogen generators using fuel processing technologies - Part 1: Safety | |
ISO/TS 19883:2017 | Safety of pressure swing adsorption systems for hydrogen separation and purification | |
ISO 21266—1:2018 | Road vehicles - Compressed gaseous hydrogen (CGH2) and hydrogen/natural gas blends fuel systems - Part 1: Safety requirements | |
ISO 23273:2013 | Fuel cell road vehicles - Safety specifications - Protection against hydrogen hazards for vehicles fuelled with compressed hydrogen | |
美国国家标准协会(ANSI) | ANSI/AIAA G—095A—2017 | Guide to safety of hydrogen and hydrogen systems |
表3 国内外氢能安全标准概况
Table3 Overview of domestic and overseas hydrogen energy safety standards
组织 | 标准号 | 标准名称 |
---|---|---|
中国国家标准化管理委员(SAC) | GB/T 23751.1—2009 | 微型燃料电池发电系统 第1部分:安全 |
GB/T 24549—2009 | 燃料电池电动汽车安全要求 | |
GB/T 27748.1—2017 | 固定式燃料电池发电系统 第1部分:安全 | |
GB/T 29729—2013 | 氢系统安全的基本要求 | |
GB/T 30084—2013 | 便携式燃料电池发电系统安全 | |
GB/T 31036—2014 | 质子交换膜燃料电池备用电源系统安全 | |
GB/T 31037.1—2014 | 工业起升车辆用燃料电池发电系统 第1部分:安全 | |
GB/T 31139—2014 | 移动式加氢设施安全技术规范 | |
GB/T 34539—2017 | 氢氧发生器安全技术要求 | |
GB/T 34544—2017 | 小型燃料电池车用低压储氢装置安全试验方法 | |
GB/T 34583—2017 | 加氢站用储氢装置安全技术要求 | |
GB/T 34584—2017 | 加氢站安全技术规范 | |
GB/T 36288—2018 | 燃料电池电动汽车燃料电池堆安全要求 | |
国际标准化组织(ISO) | ISO/TR 15916:2015 | Basic considerations for the safety of hydrogen systems |
ISO 16110—1:2007 | Hydrogen generators using fuel processing technologies - Part 1: Safety | |
ISO/TS 19883:2017 | Safety of pressure swing adsorption systems for hydrogen separation and purification | |
ISO 21266—1:2018 | Road vehicles - Compressed gaseous hydrogen (CGH2) and hydrogen/natural gas blends fuel systems - Part 1: Safety requirements | |
ISO 23273:2013 | Fuel cell road vehicles - Safety specifications - Protection against hydrogen hazards for vehicles fuelled with compressed hydrogen | |
美国国家标准协会(ANSI) | ANSI/AIAA G—095A—2017 | Guide to safety of hydrogen and hydrogen systems |
1 | 罗佐县, 曹勇. 氢能产业发展前景及其在中国的发展路径研究[J]. 中外能源, 2020, 25(2): 9-15. |
Luo Z X, Cao Y. Development prospect of hydrogen energy industry and its development path in China[J]. Sino-Global Energy, 2020, 25(2): 9-15. | |
2 | 张长令. 国外氢能产业导向、进展及我国氢能产业发展的思考[J]. 中国发展观察, 2020, (Z1): 116-119. |
Zhang C L. The orientation and progress of foreign hydrogen energy industry and the development of China's hydrogen energy industry [J]. China Development Observation, 2020, (Z1): 116-119. | |
3 | 张剑光. 氢能产业发展展望: 氢燃料电池系统与氢燃料电池汽车和发电[J]. 化工设计, 2020, 30(1): 3-6, 12. |
Zhang J G. Hydrogen energy industry development prospects—hydrogen fuel cell systems and hydrogen fuel cell vehicles & power generation[J]. Chemical Engineering Design, 2020, 30(1): 3-6, 12. | |
4 | Thomas C E. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. hydrogen vehicle safety report[R]. Office of Scientific and Technical Information(OSTI), 1997. |
5 | 陈敏恒, 丛德滋, 方图南, 等. 化工原理[M]. 第四版. 北京: 化学工业出版社, 2015. |
Chen M H, Cong D Z, Fang T N, et al. Principles of Chemical Engineering[M]. 4th ed. Beijing: Chemical Industry Press, 2015. | |
6 | 宋辉. 中国消防辞典[M]. 沈阳: 辽宁人民出版社, 1992. |
Song H. Chinese Fire Dictionary[M]. Shenyang: Liaoning People's Publishing House, 1992. | |
7 | 暴秀超, 刘福水. 氢气/空气混合气层流燃烧速度的实验测量与模拟计算[J]. 燃烧科学与技术, 2011, 17(5): 407-413. |
Bao X C, Liu F S. Measurement and calculation of burning velocity of hydrogen-air laminar premixed flames[J]. Journal of Combustion Science and Technology, 2011, 17(5): 407-413. | |
8 | Liu F S, Akram M Z, Wu H. Hydrogen effect on lean flammability limits and burning characteristics of an isooctane–air mixture[J]. Fuel, 2020, 266: 117144 |
9 | Vudumu S K. Experimental and computational investigations of hydrogen safety, dispersion and combustion for transporatation applications[D]. Missouri: Missouri University of Science and Technology, 2010. |
10 | 王洪海, 陈俊德, 陈冬, 等. 影响高强度低合金钢氢脆的因素[J]. 石油化工设备, 2018, 47(4): 39-48. |
Wang H H, Chen J D, Chen D, et al. Influence factors on hydrogen embrittlement of high strength low alloy steels[J]. Petro-Chemical Equipment, 2018, 47(4): 39-48. | |
11 | Maggio G, Nicita A, Squadrito G. How the hydrogen production from RES could change energy and fuel markets: a review of recent literature[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11371-11384. |
12 | Cornell A. Hydrogen production by electrolysis[C]//Proceedings of 1st international conference on electrolysis. Copenhagen, 2017: 12-15. |
13 | 黄宣旭, 练继建, 沈威, 等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设, 2020, 7(2): 1-13. |
Huang X X, Lian J J, Shen W, et al. Economic analysis of China's large-scale hydrogen energy supply chain[J]. Southern Energy Construction, 2020, 7(2): 1-13. | |
14 | 宁翔. 我国工业制氢技术路线研究及展望[J]. 能源研究与利用, 2020, (1): 52-55. |
Ning X. Research and prospect of technical route of China's industrial hydrogen production[J]. Energy Research & Utilization, 2020, (1): 52-55. | |
15 | 蒋庆梅, 王琴, 谢萍, 等. 国内外氢气长输管道发展现状及分析[J]. 油气田地面工程, 2019, 38(12): 6-8, 64. |
Jiang Q M, Wang Q, Xie P, et al. Development status and analysis of long-distance hydrogen pipeline at home and abroad[J]. Oil-Gas Field Surface Engineering, 2019, 38(12): 6-8, 64. | |
16 | 吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18. |
Lyu C, Wang J Z, Zhu W P, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18. | |
17 | 罗佐县. 蓝绿结合, 氢能发展树红线[J]. 中国石油石化, 2019, (13): 38-39. |
Luo Z X. With combination of blue and green, the development of hydrogen needs a red line[J]. China Petrochem, 2019, (13): 38-39. | |
18 | 李雪芳. 储氢系统意外氢气泄漏和扩散研究[D]. 北京: 清华大学, 2015. |
Li X F. Dispersion of unintended subsonic and supersonic hydrogen releases from hydrogen storage systems[D]. Beijing: Tsinghua University, 2015. | |
19 | Xiao J, Travis J R, Breitung W. Hydrogen release from a high pressure gaseous hydrogen reservoir in case of a small leak[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2545-2554. |
20 | Zhang J B, Zhang X, Huang W W, et al. Isentropic analysis and numerical investigation on high-pressure hydrogen jets with real gas effects[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20256-20265. |
21 | Zou Q, Tian Y, Han F. Prediction of state property during hydrogen leaks from high-pressure hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22394-22404. |
22 | Liang Y, Pan X M, Zhang C M, et al. The simulation and analysis of leakage and explosion at a renewable hydrogen refuelling station[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22608-22619. |
23 | Yu X, Wang C J, He Q Z. Numerical study of hydrogen dispersion in a fuel cell vehicle under the effect of ambient wind[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22671-22680. |
24 | Li X F, Chen Q, Chen M J, et al. Modeling of underexpanded hydrogen jets through square and rectangular slot nozzles[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6353-6365. |
25 | Sathiah P, Dixon C M. Numerical modelling of release of subsonic and sonic hydrogen jets[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8842-8855. |
26 | de Stefano M, Rocourt X, Sochet I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9031-9040. |
27 | Kobayashi H, Naruo Y, Maru Y, et al. Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17928-17937. |
28 | Malakhov A A, Avdeenkov A V, du Toit M H, et al. CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9231-9240. |
29 | Ghatauray T S, Ingram J M, Holborn P G. A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8904-8913 |
30 | Xu B P, Wen J X, Dembele S, et al. The effect of pressure boundary rupture rate on spontaneous ignition of pressurized hydrogen release[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 279-287. |
31 | Astbury G R, Hawksworth S J. Spontaneous ignition of hydrogen leaks: a review of postulated mechanisms[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2178-2185. |
32 | 肖华华, 孙金华. 高压氢气泄漏自燃研究现状及展望[J]. 安全与环境学报, 2009, 9(4): 125-129. |
Xiao H H, Sun J H. Advances and prospect of research on self-ignition caused by high-pressure hydrogen leak[J]. Journal of Safety and Environment, 2009, 9(4): 125-129. | |
33 | Kim Y R, Lee H J, Kim S, et al. A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2057-2064. |
34 | Li P, Duan Q L, Zeng Q, et al. Experimental study of spontaneous ignition induced by sudden hydrogen release through tubes with different shaped cross-sections[J]. International Journal of Hydrogen Energy. 2019, 44(42): 23821-23831. |
35 | Gong L, Duan Q L, Liu J L, et al. Effect of burst disk parameters on the release of high-pressure hydrogen[J]. Fuel, 2019, 235: 485-494. |
36 | Zeng Q, Duan Q L, Li P, et al. An experimental study of the effect of 2.5% methane addition on self-ignition and flame propagation during high-pressure hydrogen release through a tube[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3381-3390. |
37 | 段强领, 肖华华, 沈晓波, 等. 基于扩散点火理论的高压氢气泄漏自燃研究[J]. 热科学与技术, 2015, 14(1): 57-62. |
Duan Q L, Xiao H H, Shen X B, et al. Study on self-ignition caused by high-pressure hydrogen leak based on diffusion ignition theory[J].Journal of Thermal Science and Technology, 2015, 14(1): 57-62. | |
38 | Wang Z L, Pan X H, Wang Q Y, et al. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release through tubes[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22584-22597. |
39 | Jiang Y M, Pan X H, Yan W Y, et al. Pressure dynamics, self-ignition, and flame propagation of hydrogen jet discharged under high pressure[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22661-22670. |
40 | Pan X H, Wang Q Y, Yan W Y, et al. Experimental study on pressure dynamics and self-ignition of pressurized hydrogen flowing into the L-shaped tubes[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5028-5038. |
41 | Xu B P, Wen J X. Numerical study of spontaneous ignition in pressurized hydrogen release through a length of tube with local contraction[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17571-17579. |
42 | Xu X D, Jiang J, Jiang Y M, et al. Spontaneous ignition of high-pressure hydrogen and boundary layer characteristics in tubes[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20515-20524 |
43 | 弓亮. 管道内高压氢气泄漏自燃机理实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2019. |
Gong L. Experimental and numerical study on the mechanism of spontaneous ignition during high-pressure hydrogen release into a tube[D]. Hefei: University of Science and Technology of China, 2019. | |
44 | Liu B, An J, Qin F, et al. Numerical investigation of the auto-ignition of transient hydrogen injection in supersonic airflow[J]. International Journal of Hydrogen Energy, 2019, 44(45): 25042-25053. |
45 | Shen X B, Sun J H. Numerical simulation on the spontaneous ignition of leaking high pressure hydrogen from terminal unit[J]. Physics Procedia, 2012, 33: 1833-1841. |
46 | 闫伟阳, 潘旭海, 汪志雷, 等. 高压氢气泄漏自燃形成喷射火的实验研究[J]. 爆炸与冲击, 2019, 39(11): 134-143. |
Yan W Y, Pan X H, Wang Z L, et al. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire[J]. Explosion and Shock Waves, 2019, 39(11): 134-143. | |
47 | Henriksen M, Gaathaug A V, Lundberg J. Determination of underexpanded hydrogen jet flame length with a complex nozzle geometry[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8988-8996 |
48 | Hooker P, Hall J, Hoyes J R, et al. Hydrogen jet fires in a passively ventilated enclosure[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7577-7588. |
49 | Wang Z L, Zhang H, Pan X H, et al. Experimental and numerical study on the high-pressure hydrogen jet and explosion induced by sudden released into the air through tubes[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5086-5097. |
50 | Gu X C, Zhang J D, Pan Y, et al. Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field[J]. Safety Science, 2020, 122: 104532. |
51 | Xiao J J, Kuznetsov M, Travis J R. Experimental and numerical investigations of hydrogen jet fire in a vented compartment[J]. International Journal of Hydrogen Energy, 2018, 43(21): 10167-10184. |
52 | Cirrone D M C, Makarov D, Molkov V. Simulation of thermal hazards from hydrogen under-expanded jet fire[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8886-8892. |
53 | Proust C, Jamois D, Studer E. High pressure hydrogen fires[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2367-2373. |
54 | Makarov D, Shentsov V, Kuznetsov M, et al. Pressure peaking phenomenon: model validation against unignited release and jet fire experiments[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9454-9469. |
55 | Liu J Y, Fan Y Q, Zhou K B, et al. Prediction of flame length of horizontal hydrogen jet fire during high-pressure leakage process[J]. Procedia Engineering, 2018, 211: 471-478. |
56 | Zhou K B, Wang X Z, Liu, M, et al. A theoretical framework for calculating full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22765-22775. |
57 | Brunoro Ahumada C, Papadakis-Wood F I, Krishnan P, et al. Comparison of explosion models for detonation onset estimation in large-scale unconfined vapor clouds[J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104165. |
58 | Mukhim E D, Abbasi T, Tauseef S M, et al. A method for the estimation of overpressure generated by open air hydrogen explosions[J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 99-107. |
59 | Shen X B, He X C, Sun J H. A comparative study on premixed hydrogen-air and propane-air flame propagations with tulip distortion in a closed duct[J]. Fuel, 2015, 161: 248-253. |
60 | Shen X B, Zhang C, Xiu G L, et al. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct[J]. Energy, 2019, 176: 265-271. |
61 | Shen X B, Xiu G L, Wu S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering, 2017, 120: 741-747. |
62 | Zheng L G, Dou Z G, Du D P, et al. Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct[J]. International Journal of Hydrogen Energy, 2019, 44(49): 27159-27173. |
63 | Zheng K, Yang X F, Yu M G, et al. Effect of N2 and CO2 on explosion behavior of syngas/air mixtures in a closed duct[J]. International Journal of Hydrogen Energy, 2019, 44(51): 28044-28055. |
64 | Shen C C, Ma L, Huang G, et al. Consequence assessment of high-pressure hydrogen storage tank rupture during fire test[J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 223-231. |
65 | Zhang Y, Chen R K, Zhao M K, et al. Hazard evaluation of explosion venting behaviours for premixed hydrogen-air fuels with different bursting pressures[J]. Fuel, 2020, 268: 117313. |
66 | Wang L Q, Ma H H, Shen Z W. On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6271-6277. |
67 | Zhang C, Wen J, Shen X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration[J]. International Journal of Hydrogen Energy, 2019, 44: 22654-22660. |
68 | Zhang C, Shen S B, Wen J X, et al. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition[J]. Fuel, 2020, 265: 116810. |
69 | Li Y C, Bi M S, Yan C C, et al. Inerting effect of carbon dioxide on confined hydrogen explosion[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22620-22631. |
70 | Li R, Malalasekera W, Ibrahim S. Numerical study of vented hydrogen explosions in a small scale obstructed chamber[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16667-16683. |
71 | Pang L, Hu Q R, Zhao J J, et al. Numerical study of the effects of vent opening time on hydrogen explosions[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15689-15701. |
72 | Bauwens C R, Chaffee J, Dorofeev S B. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2329-2336. |
73 | Zhang S H, Ma H T, Huang X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel[J]. Process Safety and Environmental Protection, 2020, 140: 100-110. |
74 | Hansen O R, Johnson D M. Improved far-field blast predictions from fast deflagrations, DDTs and detonations of vapour clouds using FLACS CFD[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 293-306 |
75 | Zhang Q, Zhou G, Hu Y, et al. Risk evaluation and analysis of a gas tank explosion based on a vapor cloud explosion model: a case study[J]. Engineering Failure Analysis, 2019, 101: 22-35. |
76 | Zhang Y, Jiao F Y, Huang Q, et al. Experimental and numerical studies on the closed and vented explosion behaviors of premixed methane-hydrogen/air mixtures[J]. Applied Thermal Engineering, 2019, 159: 113907. |
77 | 王赓, 李燕, 潘珂.氢能技术标准化发展现状[C]//国际清洁能源论坛(澳门). 2017国际清洁能源论坛论文集. 澳门, 2017: 15-50. |
Wang G, Li Y, Pan K. Development status of hydrogen energy technology standardization[C]//The International Forum for Clean Energy (Macao). Proceedings of 2017 International Forum for Clean Energy. Macao, 2017: 15-50. | |
78 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 氢系统安全的基本要求: [S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Essential requirements for the safety of hydrogen systems: [S]. Beijing: Standards Press of China, 2013. | |
79 | 张俊峰, 欧可升, 郑津洋, 等. 我国首部氢系统安全国家标准简介[J]. 化工机械, 2015, 42(2): 157-161. |
Zhang J F, Ou K S, Zheng J Y, et al. New China national standards on safety of hydrogen systems: keys for understanding and use[J]. Chemical Engineering & Machinery, 2015, 42(2): 157-161. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[3] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[7] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[8] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[9] | 杨克, 贾岳, 纪虹, 邢志祥, 蒋军成. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究[J]. 化工学报, 2023, 74(8): 3597-3607. |
[10] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[11] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[12] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[13] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[14] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[15] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1210
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||