1 |
李忠卫, 李朝廷. 含油污泥处理技术方案[J]. 油气田环境保护, 2020, 30(1): 40-43.
|
|
Li Z W, Li C T. Technical scheme of oily sludge treatment[J]. Environmental Protection of Oil and Gas Fields, 2020, 30(1): 40-43
|
2 |
Lin B, Alhadj Mallah M M, Huang Q, et al. Effects of temperature and potassium compounds on the transformation behavior of sulfur during pyrolysis of oily sludge[J]. Energy & Fuels, 2017, 31(7): 7004-7014.
|
3 |
Hu G, Li J, Zhang X, et al. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology[J]. Journal of Environmental Management, 2017, 192: 234-242.
|
4 |
郑川江, 舒政, 叶仲斌, 等. 含油污泥处理技术研究进展[J]. 应用化工, 2013, 42(2): 332-336.
|
|
Zheng C J, Shu Z, Ye Z B, et al. Advances in oily sludge treatment research[J]. Applied Chemical Industry, 2013, 42(2): 332-336.
|
5 |
Zhou X, Jia H, Fan D, et al. The positive effects of biomass materials as additives on dehydration performance and the pyrolysis system of oily sludge[J]. Petroleum Science and Technology, 2015, 33(21/22): 1829-1836.
|
6 |
Qin L, Han J, He X, et al. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor[J]. Journal of Environmental Management, 2015, 154: 177-182.
|
7 |
Gao N, Li J, Quan C, et al. Oily sludge catalytic pyrolysis combined with fine particle removal using a Ni-ceramic membrane[J]. Fuel, 2020, 277: 118134.
|
8 |
Bao D, Li Z, Liu X, et al. Biochar derived from pyrolysis of oily sludge waste: Structural characteristics and electrochemical properties[J]. Journal of Environmental Management, 2020, 268: 110734.
|
9 |
宋薇, 刘建国, 聂永丰. 含油污泥的热解特性研究[J]. 燃料化学学报, 2008, 36(3): 286-290.
|
|
Song W, Liu J G, Nie Y F. Pyrolysis properties of oil sludge[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 286-290.
|
10 |
Ma Z, Xie J, Gao N, et al. Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis[J]. Journal of the Energy Institute, 2019, 92(4): 1053-1063.
|
11 |
van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
|
12 |
Zhang T, Li X, Guo L, et al. Reaction mechanisms in pyrolysis of hardwood, softwood, and kraft lignin revealed by ReaxFF MD simulations[J]. Energy & Fuels, 2019, 33(11): 11210-11225.
|
13 |
Pai S J, Lee H W, Han S S. Improved description of a coordinate bond in the ReaxFF reactive force field[J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7293-7299.
|
14 |
Kim S, Kumar N, Persson P, et al. Development of a ReaxFF reactive force field for titanium dioxide/water systems[J]. Langmuir, 2013, 29(25): 7838-7846.
|
15 |
Hong D, Liu L, Huang Y, et al. Chemical effect of H2O on CH4 oxidation during combustion in O2 /H2O environments[J]. Energy & Fuels, 2016, 30(10): 8491-8498.
|
16 |
Gao M, Li X, Ren C, et al. Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation[J]. Energy & Fuels, 2019, 33(4): 2848-2858.
|
17 |
Zheng M, Li X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534.
|
18 |
Xin L, Liu C, Liu Y, et al. Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study[J]. Fuel, 2020, 275: 117885.
|
19 |
Wang F, Chen L, Geng D, et al. Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry A, 2018, 122(16): 3971-3979.
|
20 |
赵衡振, 陈德珍, 洪鎏, 等. 含油污泥热解工艺及目标产物定位[J]. 石油学报(石油加工), 2020, 36(3): 557-567.
|
|
Zhao H Z, Chen D Z, Hong L, et al. Target products of oily sludges pyrolysis disposal[J]. Acta Petroleum Sinica (Petroleum Processing Section), 2020, 36(3): 557-567.
|
21 |
Zhou L, Jiang X, Liu J. Characteristics of oily sludge combustion in circulating fluidized beds[J]. Journal of Hazardous Materials, 2009, 170(1): 175-179.
|
22 |
杜林, 王五静, 张彼德, 等. 基于ReaxFF场的矿物绝缘油热解分子动力学模拟[J]. 高电压技术, 2018, 44(2): 488-497.
|
|
Du L, Wang W J, Zhang B D, et al. Molecular dynamics simulation of mineral insulating oil pyrolysis based on force field ReaxFF [J]. High Voltage Engineering, 2018, 44(2): 488-497.
|
23 |
杨肖曦, 李晓宇, 程刚, 等. 含油污泥与煤共热解特性的研究[J]. 西安石油大学学报(自然科学版), 2012, 27(5): 82-85.
|
|
Yang X X, Li X Y, Cheng G, et al. Study on co-pyrolysis performance of oily sludge and coal [J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2012, 27(5): 82-85.
|
24 |
Önenç S, Brebu M, Vasile C, et al. Copyrolysis of scrap tires with oily wastes[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 184-189.
|
25 |
Huo E, Liu C, Xu X, et al. A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of HFO-1336mzz(Z)[J]. International Journal of Refrigeration, 2017, 83: 118-130.
|
26 |
Mao Q, van Duin A C T, Luo K H. Investigation of methane oxidation by palladium-based catalyst via ReaxFF molecular dynamics simulation[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4339-4346.
|
27 |
吕全伟. 含油污泥与废轮胎混合热解工艺的研究[D]. 重庆: 重庆科技学院, 2018.
|
|
Lyu Q W. Study on co-pyrolysis process of oily sludge and waste tires[D]. Chongqing: Chongqing University of Science and Technology, 2018.
|