化工学报 ›› 2020, Vol. 71 ›› Issue (11): 4851-4872.DOI: 10.11949/0438-1157.20201296

• 南京大学化工学院院庆专栏 • 上一篇    下一篇

高倍率容量层状双金属氢氧化物超级电容材料的研究进展

赵杰1(),郭月1,沈桢1,杨立军1,吴强1(),王喜章1,胡征1,2()   

  1. 1.南京大学化学化工学院,介观化学教育部重点实验室,江苏 南京 210023
    2.江苏省纳米技术重点实验室,江苏 南京 210023
  • 收稿日期:2020-09-09 修回日期:2020-09-17 出版日期:2020-11-05 发布日期:2020-11-05
  • 通讯作者: 吴强,胡征
  • 作者简介:赵杰(1987—),男,博士研究生,zhaojienju@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFA0206500);国家自然科学基金项目(52071174);中央高校基本科研业务费专项资金(14380237)

Research progress of high-rate capacity layered double hydroxide supercapacitor materials

Jie ZHAO1(),Yue GUO1,Zhen SHEN1,Lijun YANG1,Qiang WU1(),Xizhang WANG1,Zheng HU1,2()   

  1. 1.Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
    2.Jiangsu Provincial Laboratory for Nanotechnology,Nanjing 210023,Jiangsu, China
  • Received:2020-09-09 Revised:2020-09-17 Online:2020-11-05 Published:2020-11-05
  • Contact: Qiang WU,Zheng HU

摘要:

层状双金属氢氧化物(LDHs)是由带正电荷的金属氢氧化物层板、层间带负电荷的阴离子和水分子组成的二维层状材料,可通过氢氧化物与羟基氧化物之间的可逆氧化还原反应存储与释放电荷,具有理论容量高、形貌与组分可调、成本低、易宏量制备等优点,成为近年来备受关注的超级电容器电极材料。超级电容材料在大电流密度下的比容量与其应用潜力密切相关,研究者们通过材料设计及电极工程,探索了多种提升LDHs倍率容量(即不同电流密度下的容量)的方法与技术,但至今LDHs的实际储能性能仍然远低于预期。简述了LDHs的结构、储能机理与面临的挑战,从增加反应活性、促进电荷传输动力学的角度归纳总结了提升LDHs倍率容量的研究进展,探讨了通过匹配电子传输和离子输运能力进一步提升LDHs倍率容量的新思路。

关键词: 层状双金属氢氧化物, 超级电容器, 电化学, 倍率容量, 动力学, 纳米材料, 电极工程

Abstract:

Layered double hydroxides (LDHs) are two-dimensional layered materials composed of positively charged metal hydroxide laminates, negatively charged anions between the layers, and water molecules, which can store and release charge through the reversible oxidation-reduction reaction between hydroxide and oxyhydroxide. LDHs have the advantages of high theoretical capacity, adjustable morphology and composition, low cost, and easy large-scale preparation, and have become the supercapacitor electrode materials with increasing attraction in recent years. To date, the rate capacities of LDHs are far from the expectation due to the low activity associated with low intrinsic activity and small active surface area, and the slow charge transport kinetics arising from the poor intrinsic conductivity to hinder electron transfer and the narrow interlayer distance to impede ion diffusion. Various strategies have developed to increase the activity, e.g., by regulating compositions, amorphizating, nanostructuring and constructing hierarchical structures, and to facilitate the charge transport kinetics, e.g., by compositing with carbon, depositing/growing on conductive substrates, expanding interlayer distance, exfoliation-self-assembly. This review starts with the structural characteristics and energy storage mechanism of LDHs, and then summarizes the strategies for improving the rate capacities of LDHs. The up-to-date progress in achieving the high-rate capacity by matching electron transfer with ion diffusion is also included, which suggests a new avenue to explore the advanced LDHs for energy storage.

Key words: layered double hydroxides, supercapacitors, electrochemistry, rate capacity, kinetics, nanomaterials, electrode engineering

中图分类号: