化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3288-3295.DOI: 10.11949/0438-1157.20201452
收稿日期:
2020-10-20
修回日期:
2021-03-11
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
张海南
作者简介:
田亚玲(1996—),女,硕士研究生,基金资助:
TIAN Yaling1,2(),ZHANG Hainan1(
),XU Hongbo1,TIAN Changqing1,2
Received:
2020-10-20
Revised:
2021-03-11
Online:
2021-06-05
Published:
2021-06-05
Contact:
ZHANG Hainan
摘要:
环路热管因其紧凑、高效等优势在电子元件冷却方面十分具有应用前景。实验研究了一种紧凑型平板环路热管在不同工况下的启动特性和传热特性。结果显示部分低加热功率和充液率下的启动出现振荡,高加热功率和较高充液率有利于环路热管平稳启动。总结了温度振荡现象出现的工况范围。传热特性方面,存在一个最优充液率使热管散热性能最佳,这个最优充液率与散热负荷有关。低负荷时,最优充液率较低;高负荷时,最优充液率较高。
中图分类号:
田亚玲, 张海南, 徐洪波, 田长青. 紧凑型平板环路热管实验研究[J]. 化工学报, 2021, 72(6): 3288-3295.
TIAN Yaling, ZHANG Hainan, XU Hongbo, TIAN Changqing. Experimental study on compact plate loop heat pipe[J]. CIESC Journal, 2021, 72(6): 3288-3295.
物理量 | 测量仪器 | 量程 | 精度 |
---|---|---|---|
体积 | 注射泵 | 0~25 ml | ± 0.1 ml |
温度 | T型热电偶 | -270~400℃ | ± 0.5℃ |
电压 | BP6020T | 0~300 W | ± 0.05% |
电流 | BP6020T | 0~5 A | ± 0.1% |
表1 测量仪器的具体参数
Table 1 The specification of the measuring instruments
物理量 | 测量仪器 | 量程 | 精度 |
---|---|---|---|
体积 | 注射泵 | 0~25 ml | ± 0.1 ml |
温度 | T型热电偶 | -270~400℃ | ± 0.5℃ |
电压 | BP6020T | 0~300 W | ± 0.05% |
电流 | BP6020T | 0~5 A | ± 0.1% |
1 | 庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000. |
Zhuang J, Zhang H. Heat Pipe Technology and Engineering Application[M]. Beijing: Chemical Industry Press, 2000. | |
2 | 黄问盈. 热管与热管换热器设计基础[M]. 北京: 中国铁道出版社, 1995. |
Huang W Y. Design Basis of Heat Pipe and Heat Pipe Heat Exchanger [M]. Beijing: China Railway Publishing House, 1995. | |
3 | Maydanik Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6): 635-657. |
4 | Singh R, Akbarzadeh A, Mochizuki M. Operational characteristics of a miniature loop heat pipe with flat evaporator[J]. International Journal of Thermal Sciences, 2008, 47(11): 1504-1515. |
5 | 黄洁, 王乃华, 程林. 环路热管启动特性模拟[J]. 化工学报, 2014, 65: 297-302. |
Huang J, Wang N H, Cheng L. Simulation of loop heat pipe start-up characteristic[J]. CIESC Journal, 2014, 65: 297-302. | |
6 | 王野. 多尺度毛细芯环路热管传热特性研究[D]. 北京: 华北电力大学, 2017. |
Wang Y. Heat transfer characteristics of loop heat pipe with multi-scale porous wick[D]. Beijing: North China Electric Power University, 2017. | |
7 | Anand A R, Jaiswal A, Ambirajan A, et al. Experimental studies on a miniature loop heat pipe with flat evaporator with various working fluids[J]. Applied Thermal Engineering, 2018, 144: 495-503. |
8 | Yan T, Zhao Y N, Liang J T, et al. Investigation on optimal working fluid inventory of a cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2013, 66: 334-337. |
9 | 李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270. |
Li X J, Qu J, Han X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270. | |
10 | 王晨, 李艳霞, 刘中良, 等. 毛细结构对平板热管性能的影响[J]. 化工学报, 2014, 65: 359-363. |
Wang C, Li Y X, Liu Z L, et al. Influences of capillary structures on flat plat heat pipe performance[J]. CIESC Journal, 2014, 65: 359-363. | |
11 | Lv L, Li J. Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
12 | 苏达士, 汤勇, 唐彪, 等. 多孔丝网作两相毛细泵环毛细芯的研究[J]. 流体机械, 2008, 36(7): 9-12, 24. |
Su D S, Tang Y, Tang B, et al. Reseach on capillary pumped loop with screen mesh capillary wick[J]. Fluid Machinery, 2008, 36(7): 9-12, 24. | |
13 | 董梁, 徐伟强, 李倩倩. 异形整体式热管散热器传热实验与分析[J]. 化工学报, 2016, 67(10): 4104-4110. |
Dong L, Xu W Q, Li Q Q. Experiment and simulation analysis of special-shaped overall heat pipe radiator[J]. CIESC Journal, 2016, 67(10): 4104-4110. | |
14 | Kempers R, Ewing D, Ching C Y. Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes[J]. Applied Thermal Engineering, 2006, 26(5/6): 589-595. |
15 | 朱明汉, 白鹏飞, 胡艳鑫, 等. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357. |
Zhu M H, Bai P F, Hu Y X, et al. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick[J]. CIESC Journal, 2019, 70(4): 1349-1357. | |
16 | 刘峻瑜, 栾涛, 刘龙飞, 等. 环路热管碳纤维毛细芯表面改性性能对比[J]. 表面技术, 2019, 48(1): 175-181. |
Liu J Y, Luan T, Liu L F, et al. Comparative study of surface modified carbon fiber capillary wicks in loop heat pipe[J]. Surface Technology, 2019, 48(1): 175-181. | |
17 | Xiang J H, Zhang C L, Jiang F. Fabrication technology of miniaturized loop heat pipe[J]. Advanced Materials Research, 2012, 426: 227-230. |
18 | 刘龙飞. 碳纤维毛细芯平板环路热管的性能研究及优化[D]. 济南: 山东大学, 2019. |
Liu L F. Study and optimization of flat lood heat pipe with carbon fiber capillary wicks[D]. Jinan: Shandong University, 2019. | |
19 | Liu Z C, Liu W, Nakayama A. Flow and heat transfer analysis in porous wick of CPL evaporator based on field synergy principle[J]. Heat and Mass Transfer, 2007, 43(12): 1273-1281. |
20 | Singh R, Akbarzadeh A, Dixon C, et al. Theoretical modelling of miniature loop heat pipe[J]. Heat and Mass Transfer, 2009, 46(2): 209-224. |
21 | Singh R, Akbarzadeh A, Dixon C, et al. Miniature loop heat pipe with flat evaporator for cooling computer CPU[J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(1): 42-49. |
22 | Maydanik Y F, Pastukhov V G, Chernysheva M A. Development and investigation of a miniature copper-acetone loop heat pipe with a flat evaporator[J]. Journal of Electronics Cooling and Thermal Control, 2015, 5(4): 77-88. |
23 | Zhou G H, Li J, Lv L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523. |
24 | 张晋晋, 吴静怡, 蔡爱峰. 横向补偿平板型环路热管重力辅助下的系统性能研究[J]. 制冷技术, 2018, 38(1): 7-11, 18. |
Zhang J J, Wu J Y, Cai A F. Investigation on performance of flat loop heat pipe with longitudinal replenishment under gravity-assisted condition[J]. Chinese Journal of Refrigeration Technology, 2018, 38(1): 7-11, 18. | |
25 | 盖东兴, 刘志春, 刘伟, 等. 重力辅助平板型环路热管实验研究[J]. 热能动力工程, 2010, 25(2): 196-201,244-245. |
Gai D X, Liu Z C, Liu W, et al. Experimental study of a gravity-assisted plate type of loop heat pipe[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25(2): 196-201,244-245. | |
26 | 盖东兴. 小型平板环路热管的实验研究与系统仿真[D]. 武汉: 华中科技大学, 2009. |
Gai D X. Experimental investigation and system simulation of miniature loop heat pipe with flat evaporator[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
27 | Kiseev V M, Vlassov V V, Muraoka I. Experimental optimization of capillary structures for loop heat pipes and heat switches[J]. Applied Thermal Engineering, 2010, 30(11/12): 1312-1319. |
28 | Wang S F, Zhang W B, Zhang X F, et al. Study on start-up characteristics of loop heat pipe under low-power[J]. International Journal of Heat and Mass Transfer, 2011, 54(4): 1002-1007. |
29 | Maydanik Y, Vershinin S, Chernysheva M, et al. Investigation of a compact copper-water loop heap pipe with a flat evaporator[J]. Applied Thermal Engineering, 2011, 31(16): 3533-3541. |
30 | Li J, Wang D M, Peterson G P. Experimental studies on a high performance compact loop heat pipe with a square flat evaporator[J]. Applied Thermal Engineering, 2010, 30(6/7): 741-752. |
31 | Chen B B, Liu Z C, Liu W, et al. Operational characteristics of two biporous wicks used in loop heat pipe with flat evaporator[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2204-2207. |
32 | Liou J H, Chang C W, Chao C, et al. Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1498-1506. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 353
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 522
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||