化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1906-1919.DOI: 10.11949/0438-1157.20201463
收稿日期:
2020-10-21
修回日期:
2020-12-14
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
徐进良
作者简介:
王艳(1989—),女,博士研究生,基金资助:
WANG Yan1(),XU Jinliang1,2(
),LI Wen1
Received:
2020-10-21
Revised:
2020-12-14
Online:
2021-04-05
Published:
2021-04-05
Contact:
XU Jinliang
摘要:
为了从微观角度揭示不同种类超临界流体性质,对超临界流体氩和水进行分子动力学模拟。分析了温度和压力对不同种类超临界流体局部密度时序曲线波动,物理团簇及不同密度区占比的影响。模拟结果表明,两种超临界流体物理参数的变化具有较强的一致性。首先,密度时序曲线的均方根误差的最大值所对应的温度均偏离拟临界点,随着压力增大,近临界压力出现的“脊”也逐渐减弱或消失。定压工况,径向分布函数随温度的升高,峰值和谷值均减弱,呈现出从类液状态向类气状态过渡的规律,物理团簇的个数随着温度的升高逐渐增大,最大团簇原子数的占比随着温度升高逐渐减小。定温时,随着压力的增大,表现出相反的变化趋势,物理团簇和最大团簇的占比均与系统密度有较强的依赖关系。不同压力下,系统内平均密度区占比随温度的升高,呈现出先减小后增加的变化规律,且随压力的增大,整体均匀性增强。其次通过理论方法确定两种超临界流体两相区的起止温度,发现从类液状态向类气状态转变的相变焓随压力的增加逐渐增大,是压力的线性函数。最后根据系统熵和温度的关系,阐述熵对超临界流体有序性的影响,指出熵是驱动超临界流体相变的重要作用机制。
中图分类号:
王艳, 徐进良, 李文. 不同种类超临界流体异质结构及相变分析[J]. 化工学报, 2021, 72(4): 1906-1919.
WANG Yan, XU Jinliang, LI Wen. Heterogeneous structure and phase change analysis of different kinds of supercritical fluids[J]. CIESC Journal, 2021, 72(4): 1906-1919.
图1 模拟系统物理模型(a); 模拟工况Pr-Tr相图(b); SCAr FCC结构和SCW SPC/E结构(c); 弛豫平衡过程温度、势能及压力随时间的变化规律(d)
Fig.1 Physical model of simulation system (a); Simulation point on Pr-Tr phase diagram (b); FCC structure for SCAr and SPC/E structure for SCW(c); Variation of system temperature, potential energy, and pressure during relaxation and equilibrium stage (d)
图2 Pr=1.5,2.5和3.5时SCAr和SCW的比定压热容和局部密度时序曲线的均方根误差随温度的变化
Fig.2 Time evolution of specific heat capacity and the root mean square error of local density time series of SCAr and SCW at Pr=1.5, 2.5 and 3.5
图4 SCAr物理团簇个数随温度的变化(a); SCAr最大团簇原子数占比随温度的变化(b); SCW物理团簇个数随温度的变化(c); SCW最大团簇分子数占比随温度的变化(d)
Fig.4 The number of SCAr physical clusters varies with temperature (a); Proportion of SCAr atoms in physical cluster of the largest size under different temperature (b); The number of SCW physical clusters varies with temperature (c); Proportion of SCW molecules in physical cluster of the largest size under different temperature (d)
图6 Pr=1.5、2.5和3.5时系统内高密度区()、平均密度区()和低密度区(?)的占比随温度的变化
Fig.6 System density proportion of high density region (), average density region () and low density region (?) varies with temperature at Pr=1.5,2.5 and 3.5
图8 理论方法确定两相区起止点温度 (Pr=1.5, SCAr) (a) [15]; SCAr和SCW不同压力下焓随温度的变化及相变焓的确定[(b)、(c)];SCAr和SCW相变焓随压力的变化规律(d)
Fig.8 The start (Ts) and end temperature (Te) of two-phase region are determined by theoretical method (Pr=1.5, SCAr) (a); Variation of enthalpy with various temperature and the determination of phase change enthalpy under different pressures for SCAr and SCW[(b),(c)]; The change of phase change enthalpy of different pressure for SCAr and SCW(d)
1 | 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290. |
Zhu B G, Wu X M, Zhang L, et al. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290. | |
2 | Knez Ž, Markočič E, Leitgeb M, et al. Industrial applications of supercritical fluids: a review[J]. Energy, 2014, 77: 235-243. |
3 | Brunner G. Applications of supercritical fluids[J]. Annu. Rev. Chem. Biomol. Eng., 2010, 1(1): 321-342. |
4 | Harvey A H, Friend D G. Physical properties of water[M]//Aqueous Systems at Elevated Temperatures and Pressures. Amsterdam: Elsevier, 2004: 1-27. |
5 | Arai A A, Morita T, Nishikawa K. Investigation on structural fluctuation of supercritical cyclohexane by small-angle X-ray scattering[J]. Fluid Phase Equilibr., 2007, 252(1/2): 114-118. |
6 | Cabaço M I, Besnard M, Tassaing T, et al. Local density inhomogeneities detected by Raman scattering in supercritical hexafluorobenzene[J]. Pure Appl. Chem., 2004, 76(1): 141-146. |
7 | Yoshii N, Okazaki S. Molecular dynamics study of structure of clusters in supercritical Lennard-Jones fluid[J]. Fluid Phase Equilibr., 1998, 144(1/2): 225-232. |
8 | Metatla N, Lafond F, Jay-Gerin J P, et al. Heterogeneous character of supercritical water at 400℃ and different densities unveiled by simulation[J]. RSC Adv., 2016, 6(36): 30484-30487. |
9 | Skarmoutsos I, Samios J. Local density inhomogeneities and dynamics in supercritical water: a molecular dynamics simulation approach[J]. J. Phys. Chem. B, 2006, 110(43): 21931-21937. |
10 | Skarmoutsos I, Guardia E, Samios J. Local structural fluctuations, hydrogen bonding and structural transitions in supercritical water[J]. J. Supercrit. Fluid., 2017, 130: 156-164. |
11 | Bernal J D. The Bakerian lecture, 1962. The structure of liquids[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1964, 280(1382): 299-322. |
12 | Gallo P, Corradini D, Rovere M. Widom line and dynamical crossovers as routes to understand supercritical water[J]. Nat. Commun., 2014, 5: 5806. |
13 | Raman A S, Li H Y, Chiew Y C. Widom line, dynamical crossover, and percolation transition of supercritical oxygen via molecular dynamics simulations[J]. J. Chem. Phys., 2018, 148(1): 014502. |
14 | Simeoni G G, Bryk T, Gorelli F A, et al. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids[J]. Nat. Phys., 2010, 6(7): 503-507. |
15 | Banuti D T. Crossing the Widom-line - supercritical pseudo-boiling[J]. J. Supercrit. Fluid., 2015, 98: 12-16. |
16 | Banuti D T, Raju M, Ihme D M. Between supercritical liquids and gases -reconciling dynamic and thermodynamic state transitions[J]. J. Supercrit. Fluid., 2020, 165:104895. |
17 | McMillan P F, Stanley H E. Fluid phases: going supercritical[J]. Nat. Phys., 2010, 6(7): 479-480. |
18 | Nichele J, de Oliveira A B, Alves L S D B, et al. Accurate calculation of near-critical heat capacities CP and CV of argon using molecular dynamics[J]. J. Mol. Liq., 2017, 237: 65-70. |
19 | Nichele J, Borges I, Oliveira A B, et al. Molecular dynamics simulations of momentum and thermal diffusion properties of near-critical argon along isobars[J]. J. Supercrit. Fluid., 2016, 114: 46-54. |
20 | Lautenschlaeger M P, Hasse H. Transport properties of the Lennard-Jones truncated and shifted fluid from non-equilibrium molecular dynamics simulations[J]. Fluid Phase Equilibr., 2019, 482: 38-47. |
21 | Losey J, Sadus R J. The Widom line and the Lennard-Jones potential[J]. J. Phys. Chem. B, 2019, 123(39): 8268-8273. |
22 | Ghosh K, Krishnamurthy C V. Structural behavior of supercritical fluids under confinement[J]. Phys. Rev. E, 2018, 97(1): 012131. |
23 | Guàrdia E, Martí J. Density and temperature effects on the orientational and dielectric properties of supercritical water[J]. Phys. Rev. E, 2004, 69: 011502. |
24 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1): 1-19. |
25 | Maddox M W, Goodyear G, Tucker S C. Origins of atom-centered local density enhancements in compressible supercritical fluids[J]. J. Phys. Chem. B, 2000, 104(26): 6248-6257. |
26 | Maddox M W, Goodyear G, Tucker S C. Effect of critical slowing down on local-density dynamics[J]. J. Phys. Chem. B, 2000, 104(26): 6266-6270. |
27 | 王艳, 徐进良, 李文, 等. 超临界流体密度波动机理的分子动力学模拟[J]. 科学通报, 2020, 65(17): 1694-1705. |
Wang Y, Xu J L, Li W, et al. Molecular dynamics study of mechanism of density fluctuation in supercritical fluid[J]. Chinese Science Bulletin, 2020, 65(17): 1694-1705. | |
28 | 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007: 110-112. |
Chen Z L, Xu W R, Tang L D. Theory and Practice of Molecular Simulation [M]. Beijing: Chemical Industry Press, 2007: 110-112. | |
29 | Barrat J L, Hansen J P. Basic Concepts for Simple and Complex Liquids[M]. Cambridge: Cambridge University Press, 2003. |
30 | Bolmatov D, Brazhkin V V, Fomin Y D, et al. Evidence for structural crossover in the supercritical state[J]. J. Chem. Phys., 2013, 139(23): 234501. |
31 | Sedunov B I. Structural transition in supercritical fluids[J]. Journal of Thermodynamics, 2011, 2011: 1-5. |
32 | Martinez H L, Ravi R, Tucker S C. Characterization of solvent clusters in a supercritical Lennard-Jones fluid[J]. J. Chem. Phys., 1996, 104(3): 1067-1080. |
33 | Zhao Z X, Sun C Z, Zhou R F. Thermal conductivity of confined-water in graphene nanochannels[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119502. |
34 | Cengel Y A, Boles M A. Thermodynamics:An Engineering Approach[M]. 5th ed. New York: McGraw-Hill, 1991: 346-350. |
35 | 姜中宏, 胡新元, 赵祥书. 试论玻璃结构: 用熵的观点讨论结构状态[J]. 硅酸盐学报, 1982, 10(4): 491-499. |
Jiang Z H, Hu X Y, Zhao X S. Some aspects of glass structure—discussion of the structural state in light of entropy[J]. Journal of the Chinese Ceramic Society, 1982, 10(4): 491-499. | |
36 | Fehder P L. “Anomalies” in the radial distribution functions for simple liquids[J]. J. Chem. Phys., 1970, 52(2): 791-796. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[4] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[9] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[10] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[11] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[14] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[15] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 378
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 693
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||