化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 184-193.doi: 10.11949/0438-1157.20201565
KUANG Yiwu1(),SUN Lijie2,WANG Wen1(
),ZHUAN Rui2,ZHANG Liang2
摘要:
基于双流体模型,建立了液氢管内流动沸腾的数值模型,在液体Reynolds数67000~660000、壁面热通量16300~317800 W/m2、饱和温度22~29 K、入口过冷度0~8 K的范围内,对管径5.95和6.35 mm的圆管内液氢流动沸腾开展了数值模拟研究,并与试验结果进行了对比。对比显示,液氢流动沸腾传热系数的模拟结果与试验数据的平均误差(MAE)为7.79%,94%的模拟数据都在±20%误差带范围内。
中图分类号:
1 | Walters H H. Single-tube heat transfer tests with liquid hydrogen [C]// Advances in Cryogenic Engineering. Proceedings of the 1960 Cryogenic Engineering Conference. University of Colorado and National Bureau of Standards Boulder, Colorado, 1961: 509-516. |
2 | Shirai Y, Tatsumoto H, Shiotsu M, et al. Forced flow boiling heat transfer of liquid hydrogen for superconductor cooling [J]. Cryogenics, 2011, 51(6): 295-299. |
3 | Hartwig J, Styborski J, McQuillen J, et al. Liquid hydrogen line chilldown experiments at high Reynolds numbers. Optimal chilldown methods [J]. International Journal of Heat and Mass Transfer, 2019, 137: 703-713. |
4 | 王磊, 朱康, 马原, 等. 常重力及微重力下液氢膜态沸腾换热预测[J]. 航空动力学报, 2017, 32(8): 1835-1843. |
Wang L, Zhu K, Ma Y, et al. Heat transfer prediction on film boiling of liquid hydrogen under normal gravity and microgravity environments [J]. Journal of Aerospace Power, 2017, 32(8): 1835-1843. | |
5 | Mercado M, Wong N, Hartwig J. Assessment of two-phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe heating experiments [J]. International Journal of Heat and Mass Transfer, 2019, 133: 295-315. |
6 | 李祥东, 汪荣顺, 黄荣国, 等. 垂直圆管内液氮流动沸腾的理论模型及数值模拟[J]. 化工学报, 2006, 57(3): 491-497. |
Li X D, Wang R S, Huang R G, et al. Modelling and numerical simulation of boiling flow of liquid nitrogen in vertical tube [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(3): 491-497. | |
7 | 邵雪锋, 李祥东, 汪荣顺. 竖直环形通道内液氮流动沸腾的数值模拟[J]. 化学工程, 2011, 39(10): 82-86, 95. |
Shao X F, Li X D, Wang R S. Numerical simulation of liquid nitrogen boiling flow in vertical annular pipe [J]. Chemical Engineering (China), 2011, 39(10): 82-86, 95. | |
8 | 吴舒琴, 李亦健, 魏健健, 等. 基于RPI沸腾模型的液氮池内核态沸腾过程模拟与分析[J]. 低温工程, 2018, (5): 27-32. |
Wu S Q, Li Y J, Wei J J, et al. Numerical simulation and analysis of nucleate pool boiling process of liquid nitrogen based on RPI boiling model [J]. Cryogenics, 2018, (5): 27-32. | |
9 | 田野, 黄伟, 王海松, 等. 竖直加热通道内气泡脱离直径预测模型[J]. 中国科技论文, 2018, 13(23): 2654-2657. |
Tian Y, Huang W, Wang H S, et al. Bubble departure diameter predicted model in vertical boiling system [J]. China Sciencepaper, 2018, 13(23): 2654-2657. | |
10 | Kurul N, Podowski M Z. On the modeling of multidimensional effects in boiling channels [C]// Proceedings of the 27th National Heat Transfer Conference. Minneapolis, Minnesota, USA, 1991. |
11 | Mikic B B, Rohsenow W M. A new correlation of pool-boiling data including the effect of heating surface characteristics [J]. Journal of Heat Transfer, 1969, 91(2): 245-250. |
12 | Lemmert M, Chawla J M. Influence of flow velocity on surface boiling heat transfer coefficient [EB/OL]. 1977. |
13 | Kirichenko I A, Dolgoi M L, Levchenko N M, et al. The boiling of cryogenic liquids [EB/OL]. 1976. |
14 | Du J Y, Zhao C R, Bo H L. Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling [J]. International Journal of Heat and Mass Transfer, 2018, 127: 796-805. |
15 | Cole R. A photographic study of pool boiling in the region of the critical heat flux [J]. AIChE Journal, 1960, 6(4): 533-538. |
16 | 高旭, 王学会, 雷刚, 等. 微重力流动沸腾气泡脱离机制[J]. 低温工程, 2015, (2): 7-11, 27. |
Gao X, Wang X H, Lei G, et al. Bubble departure mechanism in microgravity flow boiling [J]. Cryogenics, 2015, (2): 7-11, 27. | |
17 | Bland M E, Bailey C A, Davey G. Boiling from metal surfaces immersed in liquid nitrogen and liquid hydrogen [J]. Cryogenics, 1973, 13(11): 651-657. |
18 | Ranz W E, Marshall W R J. Evaporation from drops (Ⅱ) [J]. Chemical Engineering Progress, 1952, 48(173): 173-180. |
19 | Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubble flow [J]. International Journal of Multiphase Flow, 1975, 2(1): 79-95. |
20 | Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simple shear flows [J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. |
21 | Ishii M. Two-fluid model for two-phase flow [J]. Multiphase Science and Technology, 1990, 5(1/2/3/4): 1-63. |
22 | Ünal H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 mN/m2 [J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. |
23 | Kocamustafaogullari G, Ishii M. Interfacial area and nucleation site density in boiling systems [J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387. |
[1] | 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126. |
[2] | 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160. |
[3] | 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177. |
[4] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[5] | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
[6] | 曲泓硕, 张伦, 张小松, 纪文彬. 溶液除湿系统空气状态影响因素[J]. 化工学报, 2021, 72(S1): 210-217. |
[7] | 孙博, 王建伟, 张小松. 基于电渗析的溶液再生传质模型及性能分析[J]. 化工学报, 2021, 72(S1): 218-226. |
[8] | 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265. |
[9] | 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277. |
[10] | 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294. |
[11] | 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301. |
[12] | 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41. |
[13] | 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317. |
[14] | 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335. |
[15] | 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355. |
|