1 |
Walters H H. Single-tube heat transfer tests with liquid hydrogen [C]// Advances in Cryogenic Engineering. Proceedings of the 1960 Cryogenic Engineering Conference. University of Colorado and National Bureau of Standards Boulder, Colorado, 1961: 509-516.
|
2 |
Shirai Y, Tatsumoto H, Shiotsu M, et al. Forced flow boiling heat transfer of liquid hydrogen for superconductor cooling [J]. Cryogenics, 2011, 51(6): 295-299.
|
3 |
Hartwig J, Styborski J, McQuillen J, et al. Liquid hydrogen line chilldown experiments at high Reynolds numbers. Optimal chilldown methods [J]. International Journal of Heat and Mass Transfer, 2019, 137: 703-713.
|
4 |
王磊, 朱康, 马原, 等. 常重力及微重力下液氢膜态沸腾换热预测[J]. 航空动力学报, 2017, 32(8): 1835-1843.
|
|
Wang L, Zhu K, Ma Y, et al. Heat transfer prediction on film boiling of liquid hydrogen under normal gravity and microgravity environments [J]. Journal of Aerospace Power, 2017, 32(8): 1835-1843.
|
5 |
Mercado M, Wong N, Hartwig J. Assessment of two-phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe heating experiments [J]. International Journal of Heat and Mass Transfer, 2019, 133: 295-315.
|
6 |
李祥东, 汪荣顺, 黄荣国, 等. 垂直圆管内液氮流动沸腾的理论模型及数值模拟[J]. 化工学报, 2006, 57(3): 491-497.
|
|
Li X D, Wang R S, Huang R G, et al. Modelling and numerical simulation of boiling flow of liquid nitrogen in vertical tube [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(3): 491-497.
|
7 |
邵雪锋, 李祥东, 汪荣顺. 竖直环形通道内液氮流动沸腾的数值模拟[J]. 化学工程, 2011, 39(10): 82-86, 95.
|
|
Shao X F, Li X D, Wang R S. Numerical simulation of liquid nitrogen boiling flow in vertical annular pipe [J]. Chemical Engineering (China), 2011, 39(10): 82-86, 95.
|
8 |
吴舒琴, 李亦健, 魏健健, 等. 基于RPI沸腾模型的液氮池内核态沸腾过程模拟与分析[J]. 低温工程, 2018, (5): 27-32.
|
|
Wu S Q, Li Y J, Wei J J, et al. Numerical simulation and analysis of nucleate pool boiling process of liquid nitrogen based on RPI boiling model [J]. Cryogenics, 2018, (5): 27-32.
|
9 |
田野, 黄伟, 王海松, 等. 竖直加热通道内气泡脱离直径预测模型[J]. 中国科技论文, 2018, 13(23): 2654-2657.
|
|
Tian Y, Huang W, Wang H S, et al. Bubble departure diameter predicted model in vertical boiling system [J]. China Sciencepaper, 2018, 13(23): 2654-2657.
|
10 |
Kurul N, Podowski M Z. On the modeling of multidimensional effects in boiling channels [C]// Proceedings of the 27th National Heat Transfer Conference. Minneapolis, Minnesota, USA, 1991.
|
11 |
Mikic B B, Rohsenow W M. A new correlation of pool-boiling data including the effect of heating surface characteristics [J]. Journal of Heat Transfer, 1969, 91(2): 245-250.
|
12 |
Lemmert M, Chawla J M. Influence of flow velocity on surface boiling heat transfer coefficient [EB/OL]. 1977.
|
13 |
Kirichenko I A, Dolgoi M L, Levchenko N M, et al. The boiling of cryogenic liquids [EB/OL]. 1976.
|
14 |
Du J Y, Zhao C R, Bo H L. Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling [J]. International Journal of Heat and Mass Transfer, 2018, 127: 796-805.
|
15 |
Cole R. A photographic study of pool boiling in the region of the critical heat flux [J]. AIChE Journal, 1960, 6(4): 533-538.
|
16 |
高旭, 王学会, 雷刚, 等. 微重力流动沸腾气泡脱离机制[J]. 低温工程, 2015, (2): 7-11, 27.
|
|
Gao X, Wang X H, Lei G, et al. Bubble departure mechanism in microgravity flow boiling [J]. Cryogenics, 2015, (2): 7-11, 27.
|
17 |
Bland M E, Bailey C A, Davey G. Boiling from metal surfaces immersed in liquid nitrogen and liquid hydrogen [J]. Cryogenics, 1973, 13(11): 651-657.
|
18 |
Ranz W E, Marshall W R J. Evaporation from drops (Ⅱ) [J]. Chemical Engineering Progress, 1952, 48(173): 173-180.
|
19 |
Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubble flow [J]. International Journal of Multiphase Flow, 1975, 2(1): 79-95.
|
20 |
Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simple shear flows [J]. Chemical Engineering Science, 2002, 57(11): 1849-1858.
|
21 |
Ishii M. Two-fluid model for two-phase flow [J]. Multiphase Science and Technology, 1990, 5(1/2/3/4): 1-63.
|
22 |
Ünal H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 mN/m2 [J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649.
|
23 |
Kocamustafaogullari G, Ishii M. Interfacial area and nucleation site density in boiling systems [J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387.
|