化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4391-4400.DOI: 10.11949/0438-1157.20201683
收稿日期:
2020-11-25
修回日期:
2021-03-11
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
赵荣祥
作者简介:
赵岩(1989—),男,硕士研究生,基金资助:
Yan ZHAO(),Xiuping LI,Rongxiang ZHAO()
Received:
2020-11-25
Revised:
2021-03-11
Online:
2021-08-05
Published:
2021-08-05
Contact:
Rongxiang ZHAO
摘要:
低共熔溶剂广泛应用于氧化脱硫过程,开发新型的低共熔溶剂并进一步提升脱硫效果具有重要的意义。 以氯化胆碱为氢键受体,苯酚为氢键供体合成了ChCl/2Ph型低共熔溶剂。通过FT-IR和1H NMR证实了苯酚和氯化胆碱之间存在氢键作用。以苯酚型低共熔溶剂为萃取剂,双氧水为氧化剂,硫酸钛为催化剂氧化脱除模拟油中的二苯并噻吩。考察了反应温度、V(ChCl/2Ph)/V(Oil)、n(H2O2)/n(S)、催化剂用量以及硫化物类型对脱硫率影响。实验表明最佳反应条件如下:模拟油量为5 ml,V(ChCl/2Ph)/V(Oil)=2∶10, n(H2O2)/n(S)=6,催化剂用量为0.01 g,反应温度为40℃,反应时间180 min。在此条件下脱硫率可以达到98.2%。求得体系的表观活化能为41.9 kJ/mol。含有催化剂的低共熔溶剂相可以重复使用5次且活性没有明显降低。机理研究表明形成钛的过氧化物和Br?nsted酸性是具有较高脱硫活性的关键。
中图分类号:
赵岩, 李秀萍, 赵荣祥. 苯酚型低共熔溶剂中硫酸钛作为催化剂高效氧化脱硫[J]. 化工学报, 2021, 72(8): 4391-4400.
Yan ZHAO, Xiuping LI, Rongxiang ZHAO. Highly efficient oxidative desulfurization with titanium sulfate as catalyst in phenol based deep eutectic solvent[J]. CIESC Journal, 2021, 72(8): 4391-4400.
29 | Li L T, Zhang J S, Shen C, et al. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation[J]. Fuel, 2016, 167: 9-16. |
30 | Zuo M G, Huang X Q, Li J X, et al. Oxidative desulfurization in diesel via a titanium dioxide triggered thermocatalytic mechanism[J]. Catalysis Science & Technology, 2019, 9(11): 2923-2930. |
31 | Park H K, Moon Y T, Kim D K, et al. Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2[J]. Journal of the American Ceramic Society, 1996, 79(10): 2727-2732. |
32 | Delgado-Mellado N, Larriba M, Navarro P, et al. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis[J]. Journal of Molecular Liquids, 2018, 260: 37-43. |
33 | Su J, Lin H F, Wang Q P, et al. Adsorption of phenol from aqueous solutions by organomontmorillonite[J]. Desalination, 2011, 269(1/2/3): 163-169. |
34 | 赵桐桐, 张冬昊, 郭振福, 等. 低共熔溶剂液相微萃取技术测定5种杀菌剂农药残留分析方法[J]. 现代食品科技, 2019, 35(8): 281-286. |
Zhao T T, Zhang D H, Guo Z F, et al. A liquid-phase microextraction method based on deep eutectic solvents determination for five kinds of fungicides residues[J]. Modern Food Science and Technology, 2019, 35(8): 281-286. | |
35 | Jiang W, Zhu K, Li H P, et al. Synergistic effect of dual Brønsted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel[J]. Chemical Engineering Journal, 2020, 394: 124831-124838. |
36 | Li H M, Zhu W S, Wang Y, et al. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride[J]. Green Chemistry, 2009, 11(6): 810-815. |
37 | Wang Y Y, Jiang D, Wang R, et al. Application of Et3NHCl-AlCl3 ionic liquid as an initiator in cationic copolymerization of 1, 3-pentadiene with styrene[J]. Reaction Kinetics and Catalysis Letters, 2007, 90(1): 69-76. |
38 | Zhao D S, Wang J L, Zhou E P. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chemistry, 2007, 9(11): 1219-1222. |
39 | Ghahramaninezhad M, Pakdel F, Niknam S M. Boosting oxidative desulfurization of model fuel by POM-grafting ZIF-8 as a novel and efficient catalyst[J]. Polyhedron, 2019, 170: 364-372. |
40 | Hao L W, Wang M R, Shan W J, et al. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. Journal of Hazardous Materials, 2017, 339: 216-222. |
1 | Ghahramaninezhad M, Ahmadpour A. A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene[J]. Environmental Science and Pollution Research, 2020, 27(4): 4104-4114. |
2 | Farzin N N, Miran B A A. Efficient desulfurization of gasoline fuel using ionic liquid extraction as a complementary process to adsorptive desulfurization[J]. Petroleum Science, 2015, 12(2): 330-339. |
41 | Caero L C, Hernández E, Pedraza F, et al. Oxidative desulfurization of synthetic diesel using supported catalysts(Part I): Study of the operation conditions with a vanadium oxide based catalyst[J]. Catalysis Today, 2005, 107/108: 564-569. |
42 | Saha B, Kumar S, Sengupta S. Green synthesis of nano silver on TiO2 catalyst for application in oxidation of thiophene[J]. Chemical Engineering Science, 2019, 199: 332-341. |
43 | Rivoira L P, Ledesma B C, Juárez J M, et al. Novel and simple one-pot method for the synthesis of TiO2 modified-CMK-3 applied in oxidative desulfurization of refractory organosulfur compounds[J]. Fuel, 2018, 226: 498-507. |
44 | Cui S H, Ma F, Wang Y Q. Oxidative desulfurization of model diesel oil over Ti-containing molecular sieves using hydrogen peroxide[J]. Reaction Kinetics and Catalysis Letters, 2007, 92(1): 155-163. |
45 | Huang D, Wang Y J, Cui Y C, et al. Direct synthesis of mesoporous TiO2 and its catalytic performance in DBT oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 378-385. |
46 | Wang C, Zhu W S, Chen Z G, et al. Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid[J]. RSC Advances, 2015, 5(121): 99927-99934. |
47 | Tang X D, Hu T, Li J J, et al. Deep desulfurization of condensate gasoline by electrochemical oxidation and solvent extraction[J].RSC Advances, 2015, 5(66): 53455-53461. |
48 | Zhang Y J, Gu Y F, Dong X B, et al. Deep oxidative desulfurization of refractory sulfur compounds with cesium salts of mono-substituted phosphomolybdate as efficient catalyst[J]. Catalysis Letters, 2017, 147(7): 1811-1819. |
49 | Wang C, Chen Z G, Yao X Y, et al. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V2O5/SBA-15 catalyst in ionic liquids[J]. RSC Advances, 2017, 7(62): 39383-39390. |
50 | Schwarzenbach G, Muehlebach J, Mueller K. Peroxo complexes of titanium[J]. Inorganic Chemistry, 1970, 9(11): 2381-2390. |
51 | Gao H S, Guo C, Xing J M, et al. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature[J]. Green Chemistry, 2010, 12(7): 1220-1224. |
52 | Taha M F, Atikah N, Chong F K, et al. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent[C]//International Conference on Fundamental and Applied Sciences 2012(ICFAS2012). Kuala Lumpur, Malaysia: AIP, 2012, 1482(1): 258-262. |
53 | 王天鹤, 刘泽, 葛茂发, 等. 3-甲基-3-丁烯基-1-醇与硫酸/过氧化氢混合溶液的吸收反应研究[J]. 环境科学, 2011, 32(12): 3599-3605. |
Wang T H, Liu Z, Ge M F, et al. Uptake of 3-methyl-3-buten-1-ol into aqueous mixed solution of sulfuric acid and hydrogen peroxide[J]. Environmental Science, 2011, 32(12): 3599-3605. | |
3 | Li H M, Zhu W S, Lu J D, et al. Deep oxidative desulfurization of fuels catalyzed by pristine simple tungstic acid[J]. Reaction Kinetics and Catalysis Letters, 2009, 96(1): 165-173. |
4 | 李志鹏. 炼油化工企业催化汽油加氢工艺技术探讨[J]. 石化技术, 2018, 25(2): 250. |
Li Z P. Discussion on catalytic gasoline hydrogenation technology in oil refining and chemical enterprises[J]. Petrochemical Industry Technology, 2018, 25(2): 250. | |
5 | Anbia M, Karami S. Desulfurization of gasoline using novel mesoporous carbon adsorbents[J]. Journal of Nanostructure in Chemistry, 2015, 5(1): 131-137. |
6 | Bakar W A W A, Ali R, Kadir A A A, et al. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel[J]. Fuel Processing Technology, 2012, 101: 78-84. |
7 | Gao Y, Liu Z, Hu G F, et al. Design and synthesis heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by different methods for extraction-oxidation desulfurization of model diesel[J]. Microporous and Mesoporous Materials, 2020, 291: 109702-109723. |
8 | Kiran N, Abro R, Abro M, et al. Extractive desulfurization of gasoline using binary solvent of Bronsted-based ionic liquids and non-volatile organic compound[J]. Chemical Papers, 2019, 73(11): 2757-2765. |
9 | Huang C P, Chen B H, Zhang J, et al. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy & Fuels, 2004, 18(6): 1862-1864. |
10 | Guo Z R, Du Y, Lei J H, et al. Oxidative desulfurization of fuel oil at room temperature catalyzed by ordered meso-macroporous HPW/SiO2[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(5): 1071-1076. |
11 | Rezvani M A, Rahmani P. Synthesis and characterization of new nanosphere hybrid nanocomposite polyoxometalate@ceramic@ polyaniline as a heterogeneous catalyst for oxidative desulfurization of real fuel[J]. Advanced Powder Technology, 2019, 30(12): 3214-3223. |
12 | Zhu L J, Lv X, Tong S Y, et al. Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas[J]. Journal of Natural Gas Science and Engineering, 2019, 69: 102941. |
13 | Dudley M W, Frost J W. Biocatalytic desulfurization of arylsulfonates[J]. Bioorganic & Medicinal Chemistry, 1994, 2(7): 681-690. |
14 | Lü H, Deng C L, Ren W Z, et al. Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids[J]. Fuel Processing Technology, 2014, 119: 87-91. |
15 | 王鑫博, 李秀萍, 赵荣祥. EMIES/p-TsOH型低共熔溶剂的合成及其氧化脱硫性能的研究[J]. 燃料化学学报, 2019, 47(1): 104-112. |
Wang X B, Li X P, Zhao R X. Synthesis of EMIES/p-TsOH type deep eutectic solvent and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 104-112. | |
16 | 李佳慧, 胡嘉, 赵荣祥, 等. 氯化胆碱/草酸型低共熔溶剂氧化脱除模拟油硫化物[J]. 燃料化学学报, 2014, 42(7): 870-876. |
Li J H, Hu J, Zhao R X, et al. Oxidative desulfurization of model oil with choline chloride/oxalic acid as a eutectic solvent[J]. Journal of Fuel Chemistry and Technology, 2014, 42(7):870-876. | |
17 | 张贤杰, 张志, 李坚, 等. ChCl-EG低共熔溶剂的物化性质[J]. 昆明理工大学学报(自然科学版), 2016, 41(2): 8-14. |
Zhang X J, Zhang Z, Li J, et al. Physicochemical properties of ChCl-EG deep eutectic solvents[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2016, 41(2): 8-14. | |
18 | Azizi N, Edrisi M. Deep eutectic solvent catalyzed eco-friendly synthesis of imines and hydrobenzamides[J]. Monatshefte Für Chemie-Chemical Monthly, 2015, 146(10): 1695-1698. |
19 | Liu W, Yu Y Q, Cao L X, et al. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 1102-1108. |
20 | Abbott A P, Capper G, McKenzie K J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 288-294. |
21 | Jiang W, Dong L, Liu W, et al. Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents[J]. RSC Advances, 2017, 7(87): 55318-55325. |
22 | Liu W, Jiang W, Zhu W Q, et al. Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424: 261-268. |
23 | Julião D, Gomes A C, Pillinger M, et al. Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents[J]. Journal of Molecular Liquids, 2020, 309:113093-113100. |
24 | Makoś P, Boczkaj G. Deep eutectic solvents based highly efficient extractive desulfurization of fuels — eco-friendly approach[J]. Journal of Molecular Liquids, 2019, 296: 111916-111926. |
25 | 廖德仲. 硫酸钛的催化活性[J]. 应用化学, 2003, 20(4):403-405. |
Liao D Z. The catalytic activity of titanium sulfate in ketalization and esterification[J]. Chinese Journal of Applied Chemistry, 2003, 20(4): 403-405. | |
26 | 李彬, 冯书晓, 章亚东. 硫酸钛催化合成乙二醇乙醚乙酸酯[J]. 精细化工, 2014, 31(6): 792-795. |
Li B, Feng S X, Zhang Y D. Synthesis of ethylene glycol monoethyl ether acetate with titanium sulfate as catalyst[J]. Fine Chemicals, 2014, 31(6): 792-795. | |
27 | Zhang Y, Li G, Kong L H, et al. Deep oxidative desulfurization catalyzed by Ti-based metal-organic frameworks[J]. Fuel, 2018, 219: 103-110. |
28 | Smolders S, Willhammar T, Krajnc A, et al. A titanium(Ⅳ)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst[J]. Angewandte Chemie International Edition, 2019, 58(27): 9160-9165. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||