化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 266-277.DOI: 10.11949/0438-1157.20210153
收稿日期:
2021-01-22
修回日期:
2021-03-01
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
高鑫
作者简介:
赵海峰(1997—),男,硕士研究生,基金资助:
ZHAO Haifeng(),LI Hong,LI Xingang,GAO Xin()
Received:
2021-01-22
Revised:
2021-03-01
Online:
2021-06-20
Published:
2021-06-20
Contact:
GAO Xin
摘要:
使用COMSOL Multiphysics软件建立了耦合电磁场、流体流动、传热以及物质传输的多物理场模型用于模拟蒸馏型反应器的微波能量利用过程,探究了蒸馏反应器中水负载在微波能辐射作用下从升温至沸腾过程,阐明了在升温阶段,样品温度呈上下层分布,上层温度较高,最大温差达20 K,自然对流的产生改善了温度分布的不均匀性;在沸腾阶段,由于下层温度较低,沸腾现象有延迟,气泡的产生消除了部分过热,其中表面蒸发量更大,最大时约为内部蒸发量的3倍,与此同时湍流现象明显改善了温度均匀性。探究了馈入功率对全沸腾状态的影响,揭示了全沸腾状态的最终温度取决于馈入功率和蒸发损耗功率的相对大小。研究结果可为微波辅助分离、反应等化工过程及装备设计提供理论基础与借鉴。
中图分类号:
赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
ZHAO Haifeng, LI Hong, LI Xingang, GAO Xin. Numerical simulation of microwave distillation reactor with multi-physical field coupling: heating and boiling processes[J]. CIESC Journal, 2021, 72(S1): 266-277.
最大网格尺寸 | 网格单元质量 | 温度/K | |
---|---|---|---|
最高温度 | 最低温度 | ||
h/10 | 0.6618 | 294.61 | 352.60 |
h/8 | 0.6611 | 294.62 | 352.71 |
h/6 | 0.6598 | 294.63 | 352.29 |
h/5 | 0.6593 | 294.66 | 352.00 |
h/4 | 0.6588 | 294.77 | 349.07 |
表1 腔体和波导内网格无关性检验
Table 1 Grid irrelevance test in cavity and waveguide
最大网格尺寸 | 网格单元质量 | 温度/K | |
---|---|---|---|
最高温度 | 最低温度 | ||
h/10 | 0.6618 | 294.61 | 352.60 |
h/8 | 0.6611 | 294.62 | 352.71 |
h/6 | 0.6598 | 294.63 | 352.29 |
h/5 | 0.6593 | 294.66 | 352.00 |
h/4 | 0.6588 | 294.77 | 349.07 |
时间/s | 蒸发损耗功率/W |
---|---|
5 | 2.10 |
20 | 3.15 |
35 | 4.05 |
50 | 5.37 |
75 | 7.88 |
表2 表面蒸发损耗功率随时间的变化
Table 2 Variation of total surface loss power with time
时间/s | 蒸发损耗功率/W |
---|---|
5 | 2.10 |
20 | 3.15 |
35 | 4.05 |
50 | 5.37 |
75 | 7.88 |
1 | Rosa R, Veronesi P, Leonelli C. A review on combustion synthesis intensification by means of microwave energy [J]. Chemical Engineering and Processing: Process Intensification, 2013, 71: 2-18. |
2 | Li H, Zhao Z Y, Xiouras C, et al. Fundamentals and applications of microwave heating to chemicals separation processes [J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109316. |
3 | Chen J J, Pitchai K, Jones D, et al. Effect of decoupling electromagnetics from heat transfer analysis on prediction accuracy and computation time in modeling microwave heating of frozen and fresh mashed potato [J]. Journal of Food Engineering, 2015, 144: 45-57. |
4 | Sturm G S J, Verweij M D, van Gerven T, et al. On the effect of resonant microwave fields on temperature distribution in time and space [J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3800-3811. |
5 | Chen M, Siochi E J, Ward T C, et al. Basic ideas of microwave processing of polymers [J]. Polymer Engineering & Science, 1993, 33(17): 1092-1109. |
6 | Gerbec J A, Magana D, Washington A, et al. Microwave-enhanced reaction rates for nanoparticle synthesis [J]. Journal of the American Chemical Society, 2005, 127(45): 15791-15800. |
7 | Li H, Shi S L, Lin B Q, et al. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal [J]. Fuel Processing Technology, 2019, 189: 49-61. |
8 | Mitic A, Gernaey K V. Process intensification tools in the small-scale pharmaceutical manufacturing of small molecules [J]. Chemical Engineering & Technology, 2015, 38(10): 1699-1712. |
9 | Pinela J, Prieto M A, Barreiro M F, et al. Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology [J]. Food and Bioproducts Processing, 2016, 98: 283-298. |
10 | Shi J L, Pan Z L, McHugh T H, et al. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating [J]. LWT - Food Science and Technology, 2008, 41(10): 1962-1972. |
11 | Sosnik A, Gotelli G, Abraham G A. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful [J]. Progress in Polymer Science, 2011, 36(8): 1050-1078. |
12 | Dudley G B, Richert R, Stiegman A E. On the existence of and mechanism for microwave-specific reaction rate enhancement [J]. Chemical Science, 2015, 6(4): 2144-2152. |
13 | Khan N R, Rathod V K. Microwave assisted enzymatic synthesis of speciality esters: a mini - review [J]. Process Biochemistry, 2018, 75: 89-98. |
14 | De Bruyn M, Budarin V L, Sturm G S J, et al. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor [J]. Journal of the American Chemical Society, 2017, 139(15): 5431-5436. |
15 | Arabi M, Amini M M, Abedini M, et al. Esterification of phthalic anhydride with 1-butanol and 2-ethylhexanol catalyzed by heteropolyacids [J]. Journal of Molecular Catalysis A: Chemical, 2003, 200(1/2): 105-110. |
16 | Li H, Meng Y, Shu D D, et al. Breaking the equilibrium at the interface: microwave-assisted reactive distillation (MARD) [J]. Reaction Chemistry & Engineering, 2019, 4(4): 688-694. |
17 | Gao X, Liu X S, Li X G, et al. Continuous microwave-assisted reactive distillation column: pilot-scale experiments and model validation [J]. Chemical Engineering Science, 2018, 186: 251-264. |
18 | Lin B Q, Li H, Chen Z W, et al. Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model [J]. Applied Thermal Engineering, 2017, 126: 949-962. |
19 | Raaholt B W, Isaksson S, Hamberg L, et al. Continuous tubular microwave heating of homogeneous foods: evaluation of heating uniformity [J]. Journal of Microwave Power and Electromagnetic Energy, 2016, 50(1): 43-65. |
20 | Topcam H, Karatas O, Erol B, et al. Effect of rotation on temperature uniformity of microwave processed low - high viscosity liquids: a computational study with experimental validation [J]. Innovative Food Science & Emerging Technologies, 2020, 60: 102306. |
21 | Chemat F, Esveld E. Microwave super-heated boiling of organic liquids: origin, effect and application [J]. Chemical Engineering & Technology, 2001, 24(7): 735-744. |
22 | 李洪, 崔俊杰, 李鑫钢, 等. 微波场强化化工分离过程研究进展[J]. 化工进展, 2016, 35(12): 3735-3745. |
Li H, Cui J J, Li X G, et al. Recent developments in microwave-assisted chemical separation processes [J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3735-3745. | |
23 | Pitchai K, Chen J, Birla S, et al. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation [J]. Journal of Food Engineering, 2014, 128: 60-71. |
24 | 刘佳惠. 微波诱导蒸发强化分离的装备与过程研究[D]. 天津: 天津大学, 2018. |
Liu J H. Study on equipment and process of microwave-induced evaporation and intensified separation [D]. Tianjin: Tianjin University, 2018. | |
25 | Chen J J, Pitchai K, Birla S, et al. Heat and mass transport during microwave heating of mashed potato in domestic oven — model development, validation, and sensitivity analysis [J]. Journal of Food Science, 2014, 79(10): E1991-E2004. |
26 | Looyenga H. Dielectric constants of heterogeneous mixtures [J]. Physica, 1965, 31(3): 401-406. |
27 | Nigam M S. Numerical simulation of buoyant mixture flows [J]. International Journal of Multiphase Flow, 2003, 29(6): 983-1015. |
28 | Bo T. CFD homogeneous mixing flow modelling to simulate subcooled nucleate boiling flow[R]. SAETechnical Paper 2004-01-1512. 2004. |
29 | Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating [J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261. |
30 | Cha-Um W, Rattanadecho P, Pakdee W. Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: influence of sample sizes, positions, and microwave power [J]. Food and Bioprocess Technology, 2011, 4(4): 544-558. |
31 | Zeitoun O, Shoukri M. Axial void fraction profile in low pressure subcooled flow boiling [J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 869-879. |
32 | Zhao P Y, Gan W W, Feng C Q, et al. Multiphysics analysis for unusual heat convection in microwave heating liquid [J]. AIP Advances, 2020, 10(8): 085201. |
33 | Chen F Y, Warning A D, Datta A K, et al. Susceptors in microwave cavity heating: modeling and experimentation with a frozen pie [J]. Journal of Food Engineering, 2017, 195: 191-205. |
34 | Chemat F, Esveld E. Microwave super-heated boiling of organic liquids: origin, effect and application [J]. Chemical Engineering & Technology, 2001, 24(7): 735-744. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[7] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[8] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[9] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[10] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[11] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[12] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[13] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[14] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[15] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||