化工学报 ›› 2022, Vol. 73 ›› Issue (2): 481-503.DOI: 10.11949/0438-1157.20211207
收稿日期:
2021-08-20
修回日期:
2021-10-18
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
徐铜文
作者简介:
蒋晨啸(1988—),男,博士,副研究员,基金资助:
Chenxiao JIANG(),Binglun CHEN(),Dongyu ZHANG,Liang GE,Yaoming WANG,Tongwen XU()
Received:
2021-08-20
Revised:
2021-10-18
Online:
2022-02-05
Published:
2022-02-18
Contact:
Tongwen XU
摘要:
锂及其化合物是国民经济和国防建设的重要战略资源,在储能电池、精细化工、原子能热核聚变等领域有着重要应用。中国是锂资源消耗与生产大国,但我国锂消费量对外依存度达70%以上,同时我国锂资源主要储存在西部地区的盐湖卤水中,低锂浓度、高镁锂比的问题提升了盐湖提锂的难度。针对我国盐湖提锂现存的问题,本文系统总结了盐湖锂资源分离提取常见的传统方法,并重点阐述了新型膜分离材料及新型膜分离过程在盐湖卤水高效提锂方面的重要进展,特别是我国科研工作者在盐湖提锂应用中所取得的最新成果。
中图分类号:
蒋晨啸, 陈秉伦, 张东钰, 葛亮, 汪耀明, 徐铜文. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503.
Chenxiao JIANG, Binglun CHEN, Dongyu ZHANG, Liang GE, Yaoming WANG, Tongwen XU. Progress in isolating lithium resources from China salt lake brine[J]. CIESC Journal, 2022, 73(2): 481-503.
1 | National Minerals Information Center. Mineral commodity summaries 2021 [R]. Reston, VA, 2021. |
2 | 刘帅. 2018年锂资源供需及未来趋势[J]. 中国地质, 2019, 46(6): 1580-1582. |
Liu S. Supply and demand of lithium resources in 2018 and future trend[J]. Geology in China, 2019, 46(6): 1580-1582. | |
3 | 杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019, 39(5): 26-40. |
Yang H P, Liu L, Ding G F. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26-40. | |
4 | 高峰, 郑绵平, 乜贞, 等. 盐湖卤水锂资源及其开发进展[J]. 地球学报, 2011, 32(4): 483-492. |
Gao F, Zheng M P, Nie Z, et al. Brine lithium resource in the salt lake and advances in its exploitation[J]. Acta Geoscientica Sinica, 2011, 32(4): 483-492. | |
5 | 周园园. 中国锂资源供需形势及对外依存度分析[J]. 资源与产业, 2019, 21(3): 46-50. |
Zhou Y Y. Supply-demand situation and external dependence of China's lithium resource[J]. Resources & Industries, 2019, 21(3): 46-50. | |
6 | Xu S S, Song J F, Bi Q Y, et al. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice[J]. Journal of Membrane Science, 2021, 635: 119441. |
7 | 崔小琴, 程芳琴, 张爱华, 等. 盐湖卤水镁锂沉淀分离工艺研究[J]. 无机盐工业, 2012, 44(7): 33-35. |
Cui X Q, Cheng F Q, Zhang A H, et al. Study on precipitation separating technique for magnesium and lithium from salt lake brine[J]. Inorganic Chemicals Industry, 2012, 44(7): 33-35. | |
8 | 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921. |
Wang Q, Zhao Y J, Liu Y, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J]. CIESC Journal, 2021, 72(6): 2905-2921. | |
9 | Liu G, Zhao Z W, Ahmad Ghahreman. Novel approaches for lithium extraction from salt-lake brines: a review[J]. Hydrometallurgy, 2019, 187: 81-100 |
10 | 庞莎莎, 梁渠, 刘凯, 等. 改进沉淀法对高镁锂比卤水进行锂镁分离研究[J]. 四川建材, 2016, 42(6): 206, 211. |
Pang S S, Liang Q, Liu K, et al. Study on the separation of lithium and magnesium from high Mg/Li ratio salt lake brine by the improved precipitation method[J]. Sichuan Building Materials, 2016, 42(6): 206, 211. | |
11 | He L H, Xu W H, Song Y F, et al. Selective removal of magnesium from a lithium-concentrated anolyte by magnesium ammonium phosphate precipitation[J]. Separation and Purification Technology, 2017, 187: 214-220. |
12 | 邢红, 应毅, 金芳. 盐湖卤水提锂进展研究[J]. 科技资讯, 2011, 9(19): 230-231, 233. |
Xing H, Ying Y, Jin F. Research Progress on lithium extraction from salt lake brine[J]. Science & Technology Information, 2011, 9(19): 230-231, 233. | |
13 | 曹兆江, 高敏, 宁占玉, 等. 青海盐湖锂资源及提锂技术概述[J]. 化工设计通讯, 2019, 45(6): 190, 207. |
Cao Z J, Gao M, Ning Z Y, et al. Lithium resources and lithium extraction technology in Qinghai salt lake[J]. Chemical Engineering Design Communications, 2019, 45(6): 190, 207. | |
14 | Xiao J L, Sun S Y, Song X F, et al. Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve[J]. Chemical Engineering Journal, 2015, 279: 659-666. |
15 | Park H, Singhal N, Jho E H. Lithium sorption properties of HMnO in seawater and wastewater[J]. Water Research, 2015, 87: 320-327. |
16 | 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7): 796-808. |
Zhao X, Zhang Q, Wu H H, et al. Extraction of lithium from salt lake brine[J]. Progress in Chemistry, 2017, 29(7): 796-808. | |
17 | 卞维柏, 潘建明. 选择性吸附提锂材料的研究进展[J]. 化工进展, 2020, 39(6): 2206-2217. |
Bian W B, Pan J M. Research progress in selective adsorption materialsfor lithium extraction[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2206-2217. | |
18 | Kanoh H, Ooi K, Miyai Y, et al. Electrochemical recovery of lithium ions in the aqueous phase[J]. Separation Science and Technology, 1993, 28(1/2/3): 643-651. |
19 | Pasta M, Battistel A, La Mantia F. Batteries for lithium recovery from brines[J]. Energy & Environmental Science, 2012, 5(11): 9487-9491. |
20 | Trócoli R, Battistel A, La Mantia F. Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery[J]. ChemSusChem, 2015, 8(15): 2514-2519. |
21 | Lawagon C P, Nisola G M, Cuevas R A I, et al. Li1-xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine[J]. Chemical Engineering Journal, 2018, 348: 1000-1011. |
22 | Du X, Guan G Q, Li X M, et al. A novel electroactive λ-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration[J]. Journal of Materials Chemistry A, 2016, 4(36): 13989-13996. |
23 | Zhang H, Du X, Ding S, et al. DFT calculations of the synergistic effect of λ-MnO2/graphene composites for electrochemical adsorption of lithium ions[J]. Physical Chemistry Chemical Physics, 2019, 21(15): 8133-8140. |
24 | Wang Q, Du X, Gao F F, et al. A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration[J]. Separation and Purification Technology, 2019, 226: 59-67. |
25 | Wang P F, Du X, Chen T, et al. A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions[J]. Electrochimica Acta, 2019, 306: 35-44. |
26 | 王晓丽, 杨文胜. 电化学提锂体系及其电极材料的研究进展[J]. 化工学报, 2021, 72(6): 2957-2971. |
Wang X L, Yang W S. Research progress of electrochemical lithium extraction systems and electrode materials[J]. CIESC Journal, 2021, 72(6): 2957-2971. | |
27 | Shi C L, Li H X, Liu B, et al. Solvent extraction of lithium from aqueous solution using an ammonium ionic liquid[J]. Journal of Molecular Liquids, 2020, 304: 112756. |
28 | Shi C L, Jing Y, Xiao J, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J]. Separation and Purification Technology, 2017, 172: 473-479. |
29 | Zhu W B, Jia Y Z, Zhang Q Y, et al. The effect of ionic liquids as co-extractant with crown ether for the extraction of lithium in dichloromethane-water system[J]. Journal of Molecular Liquids, 2019, 285: 75-83. |
30 | Li Z, Binnemans K. Selective removal of magnesium from lithium-rich brine for lithium purification by synergic solvent extraction using β-diketones and Cyanex 923[J]. AIChE Journal, 2020, 66(7): e16246. |
31 | 孙淑英, 叶帆, 宋兴福, 等. 盐湖卤水萃取提锂及其机理研究[J]. 无机化学学报, 2011, 27(3): 439-444. |
Sun S Y, Ye F, Song X F, et al. Extraction of lithium from salt lake brine and mechanism research[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(3): 439-444. | |
32 | Zhou Z Y, Qin W, Liang S K, et al. Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12926-12932. |
33 | 石成龙, 宋桂秀, 秦亚茹, 等. 磷酸三丁酯/丁酸乙酯体系协同萃取提锂的研究[J]. 化学工程, 2020, 48(2): 16-19, 73. |
Shi C L, Song G X, Qin Y R, et al. Synergistic extraction of lithium with tributyl phosphate/ethyl butyrate system[J]. Chemical Engineering (China), 2020, 48(2): 16-19, 73. | |
34 | 宋桂秀, 秦亚茹, 石成龙, 等. TBP-EB-煤油萃取体系从盐湖卤水中提锂的洗涤工艺研究[J]. 广东化工, 2019, 46(17): 13-14. |
Song G X, Qin Y R, Shi C L, et al. Study on the scrubbing process of lithium extraction from salt lake brine with TBP/EB/ethyl butyrate system[J]. Guangdong Chemical Industry, 2019, 46(17): 13-14. | |
35 | Song J F, Huang T, Qiu H B, et al. Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4 2TBP] as extractant: thermodynamics, kinetics and processes[J]. Hydrometallurgy, 2017, 173: 63-70. |
36 | Li Y, Zhao Y J, Wang H Y, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081. |
37 | 李燕, 王敏, 赵有璟, 等. 纳滤膜对高镁锂比盐湖卤水镁锂分离性能研究[J]. 化工学报, 2021, 72(6): 3130-3139. |
Li Y, Wang M, Zhao Y J, et al. Study on separation of magnesium and lithium from salt lake brine with high magnesium-to-lithium mass ratio by nanofiltration membrane[J]. CIESC Journal, 2021, 72(6): 3130-3139. | |
38 | Zhang H Z, Xu Z L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+[J]. Desalination, 2017, 420: 158-166. |
39 | Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J]. Separation and Purification Technology, 2017, 186: 233-242. |
40 | Wu H H, Lin Y K, Feng W Y, et al. A novel nanofiltration membrane with [MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. Journal of Membrane Science, 2020, 603: 117997. |
41 | Xu P, Wang W, Qian X M, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68. |
42 | Nie X Y, Sun S Y, Song X F, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J]. Journal of Membrane Science, 2017, 530: 185-191. |
43 | Nie X Y, Sun S Y, Sun Z, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination, 2017, 403: 128-135. |
44 | Ying J D, Luo M J, Jin Y, et al. Selective separation of lithium from high Mg/Li ratio brine using single-stage and multi-stage selective electrodialysis processes[J]. Desalination, 2020, 492: 114621. |
45 | Ji Z Y, Chen Q B, Yuan J S, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J]. Separation and Purification Technology, 2017, 172: 168-177. |
46 | Zhao L M, Chen Q B, Ji Z Y, et al. Separating and recovering lithium from brines using selective-electrodialysis: sensitivity to temperature[J]. Chemical Engineering Research and Design, 2018, 140: 116-127. |
47 | Guo Z Y, Ji Z Y, Chen Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes[J]. Journal of Cleaner Production, 2018, 193: 338-350. |
48 | Chen Q B, Ji Z Y, Liu J, et al. Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium[J]. Journal of Membrane Science, 2018, 548: 408-420. |
49 | Zhang C Y, Mu Y X, Zhang W, et al. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation[J]. Journal of Membrane Science, 2020, 596: 117724. |
50 | Xu T T, Shehzad M A, Yu D B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597. |
51 | Guo Y, Ying Y L, Mao Y Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie International Edition, 2016, 55(48): 15120-15124. |
52 | Sun D S, Meng M J, Yin Y J, et al. Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+[J]. Journal of Porous Materials, 2016, 23(6): 1411-1419. |
53 | Sun D S, Zhu Y Z, Meng M J, et al. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion[J]. Separation and Purification Technology, 2017, 175: 19-26. |
54 | Zhang J, Cui X L, Yang F, et al. Hybrid cation exchange membranes with lithium ion-sieves for highly enhanced Li+ permeation and permselectivity[J]. Macromolecular Materials and Engineering, 2019, 304(1): 1800567. |
55 | 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J]. 化工学报, 2017, 68(5): 1899-1905. |
Meng Q W, Zhang F, Chen L, et al. Lithium recovery from Qarham brine using adsorption-membrane separation hybrid system[J]. CIESC Journal, 2017, 68(5): 1899-1905. | |
56 | Cui J Y, Zhang Y F, Wang Y, et al. Fabrication of lithium ion imprinted hybrid membranes with antifouling performance for selective recovery of lithium[J]. New Journal of Chemistry, 2018, 42(1): 118-128. |
57 | Guo C S, Li N, Qian X M, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “Drag” effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020, 230: 115567. |
58 | Shi W H, Liu X Y, Ye C Z, et al. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane[J]. Separation and Purification Technology, 2019, 210: 885-890. |
59 | Lee D H, Ryu T, Shin J, et al. Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system[J]. Hydrometallurgy, 2017, 173: 283-288. |
60 | Zhao Z W, Si X F, Liang X X, et al. Electrochemical behavior of Li+, Mg2+, Na+ and K+ in LiFePO4/FePO4 structures [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1157-1164. |
61 | 司秀芬, 张伟光, 何利华, 等. 尖晶石锰酸锂卤水提锂热力学[J]. 中国有色金属学报, 2013, 23(12): 3410-3422. |
Si X F, Zhang W G, He L H, et al. Thermodynamics of Li-extraction from brine using spinel LiMn2O4[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(12): 3410-3422. | |
62 | He L H, Xu W H, Song Y F, et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system[J]. Global Challenges, 2018, 2(2): 1700079. |
63 | Liu D F, Sun S Y, Yu J G. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials[J]. Chemical Engineering Journal, 2019, 377: 119825. |
64 | Liu G, Zhao Z W, He L H. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474: 114185. |
65 | Zhao Z W, Liu G, Jia H, et al. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2020, 596: 117685. |
66 | Ge L, Wu B, Li Q H, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science, 2016, 498: 192-200. |
67 | Jiang C X, Wang Y M, Wang Q Y, et al. Production of lithium hydroxide from lake brines through electro–electrodialysis with bipolar membranes (EEDBM)[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6103-6112. |
68 | Qiu Y B, Yao L, Tang C, et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide[J]. Desalination, 2019, 465: 1-12. |
69 | Zhao Y J, Wang H Y, Li Y, et al. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine[J]. Desalination, 2020, 493: 114620. |
70 | 韩佳欢, 乜贞, 伍倩, 等. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12): 61-66. |
Han J H, Nie Z, Wu Q, et al. Analysis of supply and demand on China's lithium resources[J]. Inorganic Chemicals Industry, 2021, 53(12): 61-66. | |
71 | 彭科峰, 姜天海. 盐湖提锂: 在争议中完美蜕变[N]. 中国科学报, 2015-07-13(6). |
Peng K F, Jiang T H. Lithium extraction from salt lake: perfect metamorphosis in controversy [N]. Chinese Journal of Science, 2015-07-13(6). | |
72 | 《盐科学与化工》编辑部. 盐湖锂资源开发破技术瓶颈[J]. 盐科学与化工, 2019, 48(2): 15. |
Editorial Board of Journal of Salt Science and Chemical Industry. Salt lake lithium resource development broke the technical bottleneck [J]. Journal of Salt Science and Chemical Industry, 2019, 48(2): 15. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[12] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[13] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[14] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[15] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||