化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1173-1183.DOI: 10.11949/0438-1157.20211697
李勇1,2(),闫伦靖1,2,李晓荣1,2,靳鑫1,2,李挺1,2,刘倩1,2,王美君1,2(),孔娇1,2,常丽萍1,2,鲍卫仁1,2
收稿日期:
2021-11-29
修回日期:
2022-01-19
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
王美君
作者简介:
李勇(1994—),男,硕士研究生,基金资助:
Yong LI1,2(),Lunjing YAN1,2,Xiaorong LI1,2,Xin JIN1,2,Ting LI1,2,Qian LIU1,2,Meijun WANG1,2(),Jiao KONG1,2,Liping CHANG1,2,Weiren BAO1,2
Received:
2021-11-29
Revised:
2022-01-19
Online:
2022-03-15
Published:
2022-03-14
Contact:
Meijun WANG
摘要:
利用下行床连续热解实验装置,采用催化剂原位填充方式考察了三种孔道结构,不同酸量的酸性催化剂HZSM-5、Al-MCM-41、USY和一种碱性催化剂铝酸钙(Ca-Al)及酸碱催化剂的不同组合方式对挥发分转化行为的影响。结果表明,Al-MCM-41因具有适宜酸性及较大的比表面积和丰富的介孔结构,降低了焦油中重质组分含量,增加了轻质组分含量,在降低积炭和减少焦油损失方面优于酸性较强的HZSM-5和USY催化剂。Ca-Al促进烃类物质脱氢产生富氢小分子,抑制了大分子物质的缩聚,显著降低了积炭产率。结合酸碱催化剂对热解挥发分各自作用的优势,将其进行不同方式的组合,探究了在组合催化剂作用后热解挥发分产物的组成和产率变化情况,结果显示热解挥发分先通过具有脱氢性能的Ca-Al、然后再通过裂解作用适中的Al-MCM-41的Ca-Al/Al催化剂组合,表现出较强的调控挥发分组分间转化行为的能力,有效地降低了积炭的产率。
中图分类号:
李勇, 闫伦靖, 李晓荣, 靳鑫, 李挺, 刘倩, 王美君, 孔娇, 常丽萍, 鲍卫仁. 酸/碱催化剂对低阶煤热解挥发分转化行为的作用机制研究[J]. 化工学报, 2022, 73(3): 1173-1183.
Yong LI, Lunjing YAN, Xiaorong LI, Xin JIN, Ting LI, Qian LIU, Meijun WANG, Jiao KONG, Liping CHANG, Weiren BAO. Study on the mechanism of acid/base catalyst on the release behavior of volatiles during low rank coal pyrolysis[J]. CIESC Journal, 2022, 73(3): 1173-1183.
Proximate analysis/%(mass) | Ultimate analysis /%(mass, daf) | |||||||
---|---|---|---|---|---|---|---|---|
Mad① | Ad② | Vdaf③ | C | H | N | S | O④ | |
19.5 | 5.8 | 50.12 | 74.35 | 5.13 | 0.72 | 0.31 | 19.49 |
表1 NMH煤的工业分析和元素分析
Table 1 Proximate analysis and ultimate analysis of NMH coal
Proximate analysis/%(mass) | Ultimate analysis /%(mass, daf) | |||||||
---|---|---|---|---|---|---|---|---|
Mad① | Ad② | Vdaf③ | C | H | N | S | O④ | |
19.5 | 5.8 | 50.12 | 74.35 | 5.13 | 0.72 | 0.31 | 19.49 |
图2 不同类型催化剂实验前后的XRD谱图(F-实验前;S-实验后)
Fig.2 XRD patterns of different types of catalysts before and after experiment (F-before experiment, S-after experiment)
Sample | SBET / (m2/g) | Smic / (m2/g) | Vtoal/ (cm3/g) | Vmicro/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
Al-MCM-41 (F) | 759.34 | 295.98 | 0.8995 | 0.2310 | 0.6686 |
Al-MCM-41 (S) | 542.43 | 306.70 | 0.7087 | 0.2168 | 0.4919 |
USY (F) | 686.64 | 628.24 | 0.4385 | 0.2374 | 0.2010 |
USY (S) | 283.96 | 246.42 | 0.2550 | 0.0941 | 0.1609 |
HZSM-5 (F) | 320.88 | 241.42 | 0.3044 | 0.0982 | 0.2062 |
HZSM-5 (S) | 271.31 | 203.93 | 0.2558 | 0.0826 | 0.1732 |
Ca-Al (F) | 0.56 | 0.40 | 0.0013 | 0.0002 | 0.0012 |
Ca-Al (S) | 0.23 | 0.13 | 0.0007 | 0.0001 | 0.0006 |
表2 不同类型催化剂反应前后的孔结构参数
Table 2 Pore structure parameters of different types of catalysts before and after reaction
Sample | SBET / (m2/g) | Smic / (m2/g) | Vtoal/ (cm3/g) | Vmicro/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
Al-MCM-41 (F) | 759.34 | 295.98 | 0.8995 | 0.2310 | 0.6686 |
Al-MCM-41 (S) | 542.43 | 306.70 | 0.7087 | 0.2168 | 0.4919 |
USY (F) | 686.64 | 628.24 | 0.4385 | 0.2374 | 0.2010 |
USY (S) | 283.96 | 246.42 | 0.2550 | 0.0941 | 0.1609 |
HZSM-5 (F) | 320.88 | 241.42 | 0.3044 | 0.0982 | 0.2062 |
HZSM-5 (S) | 271.31 | 203.93 | 0.2558 | 0.0826 | 0.1732 |
Ca-Al (F) | 0.56 | 0.40 | 0.0013 | 0.0002 | 0.0012 |
Ca-Al (S) | 0.23 | 0.13 | 0.0007 | 0.0001 | 0.0006 |
1 | 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388. |
Wang J G, Zhao X H. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 382-388. | |
2 | 谢克昌, 李忠. 煤基燃料的制备与应用[J]. 化工学报, 2004, 55(9): 1393-1399. |
Xie K C, Li Z. Production and application of coal-based fuel[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(9): 1393-1399. | |
3 | Liu R T, Liu M, Zhao Y L, et al. Thermodynamic study of a novel lignite poly-generation system driven by solar energy[J]. Energy, 2021, 214: 119075. |
4 | 马金凤, 曾玺, 王芳, 等. 煤红外快速热解过程中床层对二次反应的影响[J]. 化工学报, 2020, 71(2): 736-745. |
Ma J F, Zeng X, Wang F, et al. Effect of coal layer thickness on secondary reaction during its infrared rapid pyrolysis[J].CIESC Journal, 2020, 71(2): 736-745. | |
5 | Niu M L, Song Z Y, Pan L Y, et al. Combined process of hydrocracking and hydrofining of coal tar[J]. Energy & Fuels, 2020, 34(11): 13614-13624. |
6 | Ohm T I, Chae J S, Lim J H, et al. Evaluation of a hot oil immersion drying method for the upgrading of crushed low-rank coal[J]. Journal of Mechanical Science and Technology, 2012, 26(4): 1299-1303. |
7 | Vitolo S, Seggiani M, Frediani P, et al. Catalytic upgrading of pyrolytic oils to fuel over different zeolites[J]. Fuel, 1999, 78(10): 1147-1159. |
8 | Liu Z Y, Guo X J, Shi L, et al. Reaction of volatiles—a crucial step in pyrolysis of coals[J]. Fuel, 2015, 154: 361-369. |
9 | 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. |
Chen Z H, Gao S Q, Xu G W. Analysis and control methods of coal pyrolysis process[J].CIESC Journal, 2017, 68(10): 3693-3707. | |
10 | Valderrama R M L, González A M, Lora E E S, et al. Reduction of tar generated during biomass gasification: a review[J]. Biomass and Bioenergy, 2018, 108: 345-370. |
11 | Gang Y, Pan L Y, Niu M L, et al. Catalytic hydrogenation of low temperature coal tar into jet fuel by using two-reactors system[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 202-208. |
12 | Wang J X, Cao J P, Zhao X Y, et al. In situ upgrading of cellulose pyrolysis volatiles using hydrofluorinated and platinum-loaded HZSM-5 for high selectivity production of light aromatics[J]. Industrial & Engineering Chemistry Research, 2019, 58(49): 22193-22201. |
13 | Han J Z, Wang X D, Yue J R, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
14 | Wei B Y, Jin L J, Wang D C, et al. Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites[J]. Fuel, 2020, 259: 116234. |
15 | Yan L J, Kong X J, Zhao R F, et al. Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis[J]. Fuel Processing Technology, 2015, 138: 424-429. |
16 | 王德亮, 陈兆辉, 余剑, 等. 不同硅铝比HZSM-5分子筛对煤热解挥发物催化提质的影响[J]. 燃料化学学报, 2021, 49(5): 634-640. |
Wang D L, Chen Z H, Yu J, et al. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-640. | |
17 | Wang F Q, Yu F W, Wei Y, et al. Promoting hydrocarbon production from fatty acid pyrolysis using transition metal or phosphorus modified Al-MCM-41 catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105146. |
18 | 唐瑞源, 田原宇, 蔡健龙, 等. 碱土金属催化剂催化裂解重油实验研究[J]. 石油与天然气化工, 2015, 44(3): 23-27. |
Tang R Y, Tian Y Y, Cai J L, et al. Study on alkaline earth metal catalyst for catalytic cracking heavy oil[J]. Chemical Engineering of Oil & Gas, 2015, 44(3): 23-27. | |
19 | 郝俊辉. 油砂沥青热化学转化基础研究[D]. 东营: 中国石油大学(华东), 2019. |
Hao J H. Fundamental study on the thermochemical conversion of oil sand bitumen[D]. Dongying: China University of Petroleum, 2019. | |
20 | Zhou Q Q, Liu Q Y, Shi L, et al. Behaviors of coking and radicals during reaction of volatiles generated from fixed-bed pyrolysis of a lignite and a subbituminous coal[J]. Fuel Processing Technology, 2017, 161: 304-310. |
21 | Wang Q, Wang M J, Wang H, et al. Effect of temperature and gasification gas from char on the reactions of volatiles generated from rapid pyrolysis of a low rank coal[J]. Fuel Processing Technology, 2021, 212: 106601. |
22 | 赵东元, 万颖, 周午纵. 有序介孔分子筛材料[M]. 北京: 高等教育出版社, 2013. |
Zhao D Y, Wan Y, Zhou W Z. Ordered Mesoporous Molecular Sieve Materials[M]. Beijing: Higher Education Press, 2013. | |
23 | 唐瑞源, 田原宇, 冷桂玲, 等. Ca基固体碱制备及其重油裂解气化性能[J]. 石油学报(石油加工), 2016, 32(3): 486-492. |
Tang R Y, Tian Y Y, Leng G L, et al. Preparation of Ca based solid base catalyst and its cracking gasification performance for heavy oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(3): 486-492. | |
24 | Zhou X Z, Liu Y, Meng X J, et al. Synthesis and catalytic cracking performance of Fe/Ti-ZSM-5 zeolite from attapulgite mineral[J]. Chinese Journal of Catalysis, 2013, 34(8): 1504-1512. |
25 | Kurnia I, Karnjanakom S, Bayu A, et al. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites[J]. Fuel Processing Technology, 2017, 167: 730-737. |
26 | Mortensen P M, Grunwaldt J D, Jensen P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407(1/2): 1-19. |
27 | Bancquart S, Vanhove C, Pouilloux Y, et al. Glycerol transesterification with methyl stearate over solid basic catalysts (I):Relationship between activity and basicity[J]. Applied Catalysis A: General, 2001, 218(1/2): 1-11. |
28 | Sada E, Kumazawa H, Kudsy M. Pyrolysis of lignins in molten salt media[J]. Industrial & Engineering Chemistry Research, 1992, 31(2): 612-616. |
29 | Xu W C, Tomita A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuel, 1987, 66(5): 627-631. |
30 | Jia Y B, Huang J J, Wang Y. Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed[J]. Energy & Fuels, 2004, 18(6): 1625-1632. |
31 | Aho A, Kumar N, Lashkul A V, et al. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010, 89(8): 1992-2000. |
32 | Rezaei P S, Shafaghat H, Daud W M A W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review[J]. Applied Catalysis A: General, 2014, 469: 490-511. |
33 | Jin X, Li X R, Kong J, et al. Insights into coke formation during thermal reaction of six different distillates from the same coal tar[J]. Fuel Processing Technology, 2021, 211: 106592. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||