化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3018-3025.DOI: 10.11949/0438-1157.20220023
收稿日期:
2022-01-07
修回日期:
2022-02-22
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
朱英红
作者简介:
褚有群(1973—),男,博士,副教授,基金资助:
Youqun CHU(),Zhanbang GE,Yufeng JIAO,Jianping ZHANG,Guanxuan GUO,Yinghong ZHU()
Received:
2022-01-07
Revised:
2022-02-22
Online:
2022-07-05
Published:
2022-08-01
Contact:
Yinghong ZHU
摘要:
有机电化学合成中大部分有机反应底物不溶于水,往往需要添加适量的有机溶剂形成有机-水混合溶剂。氯离子作为无机媒质在有机电化学合成中应用广泛,但氯离子往往溶解于水相中。而溶剂是电化学合成中的一个重要影响因素,因此很有必要对氯离子在有机-水混合溶剂中的电化学性能进行系统研究。采用循环伏安法(CV)、线性扫描法(LSV)、计时电量法研究了氯离子在有机-水混合溶剂中的动力学参数,考察了阳极材料、扫描速率、混合溶液中水的含量、有机溶剂的种类等对氯离子电化学氧化性能的影响。并以氯离子为媒质,在无隔膜电解槽中,通过间接电化学活化对甲氧基甲苯(p-MeOBT)甲基上的C—H键原位生成醛,并进一步转化为相应的腈类化合物。以p-MeOBT为反应底物,在乙腈-水混合溶液(体积比7∶3)中,恒电流电解(CCE) 12 h,60℃下,目标产物对甲氧基苯甲腈(p-MeOBCN)的收率达80%。通过对反应过程中各中间物种的监测,提出了可能的C—H键间接电腈化腈化反应机理。
中图分类号:
褚有群, 葛展榜, 焦玉峰, 张建平, 郭冠璇, 朱英红. 有机-水混合溶剂中氯离子对C—H键的电氧化腈化性能[J]. 化工学报, 2022, 73(7): 3018-3025.
Youqun CHU, Zhanbang GE, Yufeng JIAO, Jianping ZHANG, Guanxuan GUO, Yinghong ZHU. Electro-oxidative cyanidation of C—H bond by chloride ion in organic aqueous solution[J]. CIESC Journal, 2022, 73(7): 3018-3025.
v/(mV·s-1) | Iox/mA | Ire/mA | |
---|---|---|---|
25 | 2.42×10-1 | -9.23×10-3 | 26.22 |
50 | 4.80×10-1 | -1.05×10-2 | 4.57 |
100 | 5.37×10-1 | -1.61×10-1 | 3.34 |
150 | 6.53×10-1 | -2.80×10-1 | 2.33 |
300 | 8.20×10-1 | -3.61×10-1 | 2.27 |
表1 不同扫描速率下Cl-的氧化还原峰电流比|Iox / Ire|
Table 1 |Iox / Ire| of Cl- at different scanning rates
v/(mV·s-1) | Iox/mA | Ire/mA | |
---|---|---|---|
25 | 2.42×10-1 | -9.23×10-3 | 26.22 |
50 | 4.80×10-1 | -1.05×10-2 | 4.57 |
100 | 5.37×10-1 | -1.61×10-1 | 3.34 |
150 | 6.53×10-1 | -2.80×10-1 | 2.33 |
300 | 8.20×10-1 | -3.61×10-1 | 2.27 |
E/V | Ea/(kJ·mol-1) |
---|---|
1.20 | 35.020 |
1.25 | 33.526 |
1.30 | 31.133 |
1.40 | 28.318 |
表2 不同电位下Cl-电氧化反应的表观活化能
Table 2 The apparent activation energy of Cl- at different potentials
E/V | Ea/(kJ·mol-1) |
---|---|
1.20 | 35.020 |
1.25 | 33.526 |
1.30 | 31.133 |
1.40 | 28.318 |
Entry | NaCl /(mol·L-1) | Yield/% | Conv./% | ||||
---|---|---|---|---|---|---|---|
p-MeOBOH | p-MeOBA | p-MeOBO | p-MeOBCN | p-MeOBCl | |||
1 | 0.00 | 19 | 12 | 27 | 28 | 0 | 91 |
2 | 0.05 | 12 | 10 | 24 | 39 | 3 | 92 |
3 | 0.10 | 1 | 6 | 11 | 72 | 8 | 97 |
4 | 0.15 | 1 | 3 | 2 | 80 | 12 | 98 |
5 | 0.20 | 2 | 3 | 4 | 71 | 19 | 99 |
表3 不同NaCl浓度下p-MeOBT的电解结果
Table 3 Electrolysis results of p-MeOBT in different concentration of NaCl
Entry | NaCl /(mol·L-1) | Yield/% | Conv./% | ||||
---|---|---|---|---|---|---|---|
p-MeOBOH | p-MeOBA | p-MeOBO | p-MeOBCN | p-MeOBCl | |||
1 | 0.00 | 19 | 12 | 27 | 28 | 0 | 91 |
2 | 0.05 | 12 | 10 | 24 | 39 | 3 | 92 |
3 | 0.10 | 1 | 6 | 11 | 72 | 8 | 97 |
4 | 0.15 | 1 | 3 | 2 | 80 | 12 | 98 |
5 | 0.20 | 2 | 3 | 4 | 71 | 19 | 99 |
1 | Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance[J]. Chemical Reviews, 2017, 117(21): 13230-13319. |
2 | Frontana-Uribe B A, Little R D, Ibanez J G, et al. Organic electrosynthesis: a promising green methodology in organic chemistry[J]. Green Chemistry, 2010, 12(12): 2099-2119. |
3 | Tajima T, Kishi Y, Nakajima A. Anodic acyloxylation based on the acid-base reactions between acetic acid or trifluoroacetic acid and solid-supported bases[J]. Electrochimica Acta, 2009, 54(24): 5959-5963. |
4 | Liu G K, Ren B, Gu R N, et al. The electrochemical halogenation of benzene: an in situ confocal microprobe Raman study[J]. Chemical Physics Letters, 2002, 364(5/6): 593-598. |
5 | Sawamura T, Takahashi K, Inagi S, et al. Electrochemical fluorination using alkali-metal fluorides[J]. Angewandte Chemie, 2012, 51(18): 4413-4416. |
6 | Gütz C, Selt M, Bänziger M, et al. A novel cathode material for cathodic dehalogenation of 1, 1-dibromo cyclopropane derivatives[J]. Chemistry - A European Journal, 2015, 21(40): 13878-13882. |
7 | Zhang K Y, Lu N N, Yoo S J, et al. Electrochemical analysis of the triarylimidazole-type organic redox catalysts: chemical stability and homogeneous electron transfer kinetics for the oxidation of 4-methoxybenzyl alcohol[J]. Electrochimica Acta, 2016, 199: 357-365. |
8 | Peterson B M, Lin S, Fors B P. Electrochemically controlled cationic polymerization of vinyl ethers[J]. Journal of the American Chemical Society, 2018, 140(6): 2076-2079. |
9 | Ogibin Y N, Elinson M N, Nikishin G I. Mediator oxidation systems in organic electrosynthesis[J]. Russian Chemical Reviews, 2009, 78(2): 89-140. |
10 | James O O, Sauter W, Schröder U. Electrochemistry for the generation of renewable chemicals: one-pot electrochemical deoxygenation of xylose to δ-valerolactone[J]. ChemSusChem, 2017, 10(9): 2015-2022. |
11 | Leow W R, Lum Y, Ozden A, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density[J]. Science, 2020, 368(6496): 1228-1233. |
12 | Janssen L J J, Starmans L M C, Visser J G, et al. Mechanism of the chlorine evolution on a ruthenium oxide/titanium oxide electrode and on a ruthenium electrode[J]. Electrochimica Acta, 1977, 22(10): 1093-1100. |
13 | Szpyrkowicz L, Radaelli M, Daniele S. Electrocatalysis of chlorine evolution on different materials and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants[J]. Catalysis Today, 2005, 100(3/4): 425-429. |
14 | Exner K S, Anton J, Jacob T, et al. Chlorine evolution reaction on RuO2(110): ab initio atomistic thermodynamics study-pourbaix diagrams[J]. Electrochimica Acta, 2014, 120: 460-466. |
15 | Sauermann N, Meyer T H, Qiu Y A, et al. Electrocatalytic C—H activation[J]. ACS Catalysis, 2018, 8(8): 7086-7103. |
16 | Labinger J A, Bercaw J E. Understanding and exploiting C—H bond activation[J]. Nature, 2002, 417: 507-514. |
17 | Cavani F, Parrinello F, Trifirò F. Synthesis of aromatic nitriles by vapour phase catalytic ammoxidation[J]. Journal of Molecular Catalysis, 1987, 43(1): 117-125. |
18 | Kumar C P, Reddy K R, Rao V V, et al. Vapour phase ammoxidation of toluene over vanadium oxide supported on Nb2O5-TiO2 [J]. Green Chem, 2002, 4(5): 513-516. |
19 | Meyer T H, Finger L H, Gandeepan P, et al. Resource economy by metallaelectrocatalysis: merging electrochemistry and C—H activation[J]. Trends in Chemistry, 2019, 1(1): 63-76. |
20 | Morofuji T, Shimizu A, Yoshida J I. Electrochemical C—H amination: synthesis of aromatic primary amines via N-arylpyridinium ions[J]. Journal of the American Chemical Society, 2013, 135(13): 5000-5003. |
21 | Libendi S S, Demizu Y, Onomura O. Direct electrochemical α-cyanation of N-protected cyclic amines[J]. Org. Biomol. Chem., 2009, 7(2): 351-356. |
22 | Madhusudana Reddy M B, Pasha M A. Environment friendly protocol for the synthesis of nitriles from aldehydes[J]. Chinese Chemical Letters, 2010, 21(9): 1025-1028. |
23 | Movassagh B, Fazeli A. Direct synthesis of aromatic nitriles from aldehydes using hydroxylamine and oxalyl chloride[J]. Synthetic Communications, 2007, 37(4): 623-628. |
24 | Zhu Y H, Zhu Y, Zeng H Y, et al. A promising electro-oxidation of methyl-substituted aromatic compounds to aldehydes in aqueous imidazole ionic liquid solutions[J]. Journal of Electroanalytical Chemistry, 2015, 751: 105-110. |
25 | 张安伦, 曹志成, 刘建超, 等. 有机媒质作用下芳香醛的间接电合成[J]. 精细化工, 2018, 35(12): 2098-2104. |
Zhang A L, Cao Z C, Liu J C, et al. Indirect electro-oxidation synthesis of aromatic aldehyde under organic mediators[J]. Fine Chemicals, 2018, 35(12): 2098-2104. | |
26 | Karlsson R K B, Cornell A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes[J]. Chemical Reviews, 2016, 116(5): 2982-3028. |
27 | Faita G, Fiori G. Anodic discharge of chloride ions on oxide electrodes[J]. Journal of Applied Electrochemistry, 1972, 2(1): 31-35. |
28 | Protsenko V S, Danilov F I. Activation energy of electrochemical reaction measured at a constant value of electrode potential[J]. Journal of Electroanalytical Chemistry, 2011, 651(2): 105-110. |
29 | Tso C P, Shih Y H. The influence of carboxymethylcellulose (CMC) on the reactivity of FeNPs toward decabrominated diphenyl ether: the Ni doping, temperature, pH, and anion effects[J]. Journal of Hazardous Materials, 2017, 322: 145-151. |
30 | Yañez C, Basquinzay R. Chronocoulometry diffusion coefficients as a measure of cyclodextrin-estradiol complex association[J]. Journal of Electroanalytical Chemistry, 2008, 622(2): 242-245. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[7] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[8] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[9] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[10] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[11] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[12] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[13] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[14] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[15] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||