化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2933-2943.DOI: 10.11949/0438-1157.20220033
黄陆月1(),刘畅1,许勇毅2,邢浩若1,王峰2,马双忱1()
收稿日期:
2022-01-07
修回日期:
2022-05-18
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
马双忱
作者简介:
黄陆月(1997—),女,硕士研究生,基金资助:
Luyue HUANG1(),Chang LIU1,Yongyi XU2,Haoruo XING1,Feng WANG2,Shuangchen MA1()
Received:
2022-01-07
Revised:
2022-05-18
Online:
2022-07-05
Published:
2022-08-01
Contact:
Shuangchen MA
摘要:
电容去离子技术(CDI)作为一种新兴的水处理脱盐技术,因其具有诸多优异性能而受到广泛关注。厘清CDI的传质机制是理论研究的焦点。通过对已有经验模型的分析,从沿流向方向和垂直流向方向两个方面,考虑了电场迁移以及传质扩散等因素,提出了一种新的CDI二维浓度传质模型,对CDI在除盐过程中的离子扩散及浓度分布规律进行模拟探究,根据实际实验结果对该模型进行实验验证及参数修正。结果表明,该二维模型可以较好地模拟CDI除盐过程。将该二维模型利用COMSOL软件进行模拟,观测CDI在除盐过程中的内部浓度变化。并针对存在问题提出合理化建议,为CDI技术的未来发展提供理论支撑。
中图分类号:
黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
Luyue HUANG, Chang LIU, Yongyi XU, Haoruo XING, Feng WANG, Shuangchen MA. Development of CDI two-dimensional concentration mass transfer model and experimental validation[J]. CIESC Journal, 2022, 73(7): 2933-2943.
名称 | 模型 | 优点 | 缺点 |
---|---|---|---|
Biesheuvel等的模型 | 一维 | 理论模型的预测与离子去除步骤的实验结果一致性很高 | 离子解吸步骤的实验结果与模型不吻合,说明模型存在缺陷 |
Suss等的模型 | 一维 | 能预测随着时间的推移,浓度和电位在电极间隙和电极上的变化 | 不适合用于预测确切的电池性能;忽略了表面传导和电渗流的影响 |
Perez等的传质模型 | 一维 | 很好地预测了低流速和高流速下溶液的脱盐率 | 只适用于低浓度的溶液;使用了Nernst层近似 |
Hemmatifar等的模型 | 二维 | 模型结果与实验数据一致性较好;模型是充分模块化的 | 假设恒定的微孔电容不够精确;忽略了系统是动态变化的 |
表1 传质模型优缺点对比
Table 1 Comparison of pros and cons of CDI mass transfer model
名称 | 模型 | 优点 | 缺点 |
---|---|---|---|
Biesheuvel等的模型 | 一维 | 理论模型的预测与离子去除步骤的实验结果一致性很高 | 离子解吸步骤的实验结果与模型不吻合,说明模型存在缺陷 |
Suss等的模型 | 一维 | 能预测随着时间的推移,浓度和电位在电极间隙和电极上的变化 | 不适合用于预测确切的电池性能;忽略了表面传导和电渗流的影响 |
Perez等的传质模型 | 一维 | 很好地预测了低流速和高流速下溶液的脱盐率 | 只适用于低浓度的溶液;使用了Nernst层近似 |
Hemmatifar等的模型 | 二维 | 模型结果与实验数据一致性较好;模型是充分模块化的 | 假设恒定的微孔电容不够精确;忽略了系统是动态变化的 |
R/Pa | T/K | d/m | z | F | D/(m2/s) | E/V | t1 | t2 | |
---|---|---|---|---|---|---|---|---|---|
8.314 | 298 | 0.005 | 1 | 96500 | 1.48×10-9 | 1.2 | 0.623 | 0.97 | 100 |
表2 参数设置
Table 2 The parameters setting in 2D mass transfer model
R/Pa | T/K | d/m | z | F | D/(m2/s) | E/V | t1 | t2 | |
---|---|---|---|---|---|---|---|---|---|
8.314 | 298 | 0.005 | 1 | 96500 | 1.48×10-9 | 1.2 | 0.623 | 0.97 | 100 |
1 | 马双忱, 刘畅, 马岚, 等. 电吸附用于微污染水处理:技术选择、工艺原理、未来发展[J]. 化工进展, 2020, 39(7): 2841-2849. |
Ma S C, Liu C, Ma L, et al. Electro-adsorption for micro-polluted water treatment: technology selection, process principle, future development[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2841-2849. | |
2 | Chen R, Sheehan T, Ng J L, et al. Capacitive deionization and electrosorption for heavy metal removal[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 258-282. |
3 | Liang P, Ren Z J, Huang X. Capacitive deionization and electrosorption: from desalination to ion management[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 241-242. |
4 | Xing W L, Liang J, Tang W W, et al. Perchlorate removal from brackish water by capacitive deionization: experimental and theoretical investigations[J]. Chemical Engineering Journal, 2019, 361: 209-218. |
5 | Liu C, Ma L, Xu Y Y, et al. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater[J]. Environmental Science and Pollution Research International, 2022, 29(1): 518-530. |
6 | Lee J, Jo K, Lee J, et al. Rocking-chair capacitive deionization for continuous brackish water desalination[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10815-10822. |
7 | Moustafa H M, Obaid M, Nassar M M, et al. Titanium dioxide-decorated rGO as an effective electrode for ultrahigh-performance capacitive deionization[J]. Separation and Purification Technology, 2020, 235: 116178. |
8 | Liu N L, Sun S H, Hou C H. Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization[J]. Separation and Purification Technology, 2019, 215: 403-409. |
9 | Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it? [J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. |
10 | Suss M E, Baumann T F, Bourcier W L, et al. Capacitive desalination with flow-through electrodes[J]. Energy & Environmental Science, 2012, 5(11):9511. |
11 | 高晓丹, 李航, 田锐, 等. 利用基于Gouy-Chapman模型的离子有效电荷定量表征离子特异性效应[J]. 物理化学学报, 2014, 30(12): 2272-2282. |
Gao X D, Li H, Tian R, et al. Quantitative characterization of specific ion effects using an effective charge number based on the gouy-chapman model[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2272-2282. | |
12 | Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
13 | Oldham K B. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface[J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 131-138. |
14 | Zhao R, Biesheuvel P M, Miedema H, et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 205-210. |
15 | Kondrat S, Wu P, Qiao R, et al. Accelerating charging dynamics in subnanometre pores [J]. Nature Materials, 2014, 13 (4): 387-393. |
16 | Biesheuvel P M, Porada S, Levi M, et al. Attractive forces in microporous carbon electrodes for capacitive deionization[J]. Journal of Solid State Electrochemistry, 2014, 18(5): 1365-1376. |
17 | Huang J S, Sumpter B, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry - A European Journal, 2008, 14(22): 6614-6626. |
18 | Biesheuvel P M, Bazant M Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(3): 031502. |
19 | Biesheuvel P M, Zhao R, Porada S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(1): 239-248. |
20 | Biesheuvel P M, van Limpt B, van der Wal A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14): 5636-5640. |
21 | Newman J, Tiedemann W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41. |
22 | Bazant M Z, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2): 021506. |
23 | Bouhadana Y, Avraham E, Soffer A, et al. Several basic and practical aspects related to electrochemical deionization of water[J]. AIChE Journal, 2010, 56(3): 779-789. |
24 | Perez C A R, Demirer O N, Clifton R L, et al. Macro analysis of the electro-adsorption process in low concentration NaCl solutions for water desalination applications[J]. Journal of the Electrochemical Society, 2013, 160(3): E13-E21. |
25 | Hemmatifar A, Stadermann M, Santiago J G. Two-dimensional porous electrode model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2015, 119(44): 24681-24694. |
26 | Biesheuvel P M, Fu Y Q, Bazant M Z. Diffuse charge and Faradaic reactions in porous electrodes[J]. Physical Review E, 2011, 83(6): 061507. |
27 | Biesheuvel P M, Fu Y Q, Bazant M Z. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes[J]. Russian Journal of Electrochemistry, 2012, 48(6): 580-592. |
28 | Zhao R, Biesheuvel P M, van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520-9527. |
29 | Suss M E, Biesheuvel P M, Baumann T F, et al. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization[J]. Environmental Science & Technology, 2014, 48(3): 2008-2015. |
30 | Bard A J, Faulkner L R, White H S. Electrochemical Methods: Fundamentals and Applications[M]. New York: John Wiley & Sons, 2022. |
31 | Sousa P, Soares A, Monteiro E, et al. A CFD study of the hydrodynamics in a desalination membrane filled with spacers[J]. Desalination, 2014, 349: 22-30. |
32 | 马岚. 电容去离子技术用于电厂循环冷却排污水脱盐实验研究[D]. 北京: 华北电力大学, 2021. |
Ma L. Experimental study on the application of capacitive deionization technology in desalination of circulating cooling sewage in power plants[D]. Beijing: North China Electric Power University, 2021. |
[1] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[2] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[3] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[4] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[5] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[6] | 闫军营, 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明, 徐铜文. 选择性电渗析:机遇与挑战[J]. 化工学报, 2023, 74(1): 224-236. |
[7] | 刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
[8] | 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771. |
[9] | 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
[10] | 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
[11] | 宋哲, 许波, 陈振乾. 管壳式蒸发器内分流板均分性能的研究[J]. 化工学报, 2021, 72(9): 4629-4638. |
[12] | 郭中权, 邹湘, 毛维东, 孙邃, 马赛, 吕顺之, 刘雪菲, 王远. 矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J]. 化工学报, 2021, 72(9): 4808-4815. |
[13] | 蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825. |
[14] | 杨锋苓, 曹明见, 张翠勋, 刘欣. 柔性Rushton搅拌桨的振动特性[J]. 化工学报, 2021, 72(4): 1975-1986. |
[15] | 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||