化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2563-2572.doi: 10.11949/0438-1157.20220052

• 流体力学与传递现象 • 上一篇    下一篇

并行微通道内液液两相流及介尺度效应

王忠东(),朱春英,马友光,付涛涛()   

  1. 天津大学化工学院,化学工程联合国家重点实验室,天津 300072
  • 收稿日期:2022-01-11 修回日期:2022-04-07 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 付涛涛 E-mail:wzdtju@163.com;ttfu@tju.edu.cn
  • 作者简介:王忠东(1999—),男,硕士研究生,wzdtju@163.com
  • 基金资助:
    国家自然科学基金项目(21878212)

Liquid-liquid two-phase flow and mesoscale effect in parallel microchannels

Zhongdong WANG(),Chunying ZHU,Youguang MA,Taotao FU()   

  1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2022-01-11 Revised:2022-04-07 Published:2022-06-05 Online:2022-06-30
  • Contact: Taotao FU E-mail:wzdtju@163.com;ttfu@tju.edu.cn

摘要:

使用高速摄像仪研究了T形并行微通道液液两相流的流型。以甘油-水溶液为分散相、含5%(质量分数)道康宁的硅油为连续相,下游通道中观察到了塞状流、液滴流、环状流和并行流4种流型,绘制了流型图及流型转变线。研究了后空腔中液滴群的形态,运用介尺度概念分析了后空腔中液滴群的行为对流量分配的影响。观察到后空腔中液滴群的挤压、松散、有序排列和并行排列等4种形态,不同形态的转变主要受两相流量比的控制。研究了两相流量比对并行微通道内流量分配的影响,以及分析了不同操作条件下影响流量分配的主导因素。在两相流量比较小时,流量分配由下游通道的流体阻力主导,而两相流量比较大时由后空腔内液滴群动力学主导。

关键词: 并行微通道, 两相流, 分布, 介尺度

Abstract:

The flow patterns of liquid-liquid two-phase flow in T-shaped parallel microchannels are studied by using a high-speed camera system. The glycerol-water solution is used as the dispersed phase, and silicone oil with 5% Dowsil as the continuous phase. Four flow patterns of slug flow, droplet flow, annular flow and parallel flow are observed in parallel channels under different two-phase flow conditions. The diagram of flow patterns is constructed with the flow rates of the two-phase as the coordinate axes, and the transition lines of flow patterns are obtained. The influences of the viscosity of the continuous phase on the flow patterns and their transitions are investigated. As the viscosity of the continuous phase increases, the transition lines of flow patterns move downward, the region of the slug flow becomes smaller, and the region of the droplet flow becomes larger. The flow patterns of the droplet group in cavity are studied, and the mesoscale concept is used to analyze the effects of the behavior of the droplet group in cavity on the flow distribution. Four flow patterns in cavity are observed under different two-phase flow conditions, the flow patterns of the droplet group in cavity are mainly affected by the flow ratio of the two phases. The flow distribution is mainly controlled by the fluid resistance of the parallel channels and the mesoscale structure of the cavity. The influence of flow ratio of the two phases on flow distribution is studied and the dominant factor of flow distribution corresponding to different operating conditions is obtained. When the two-phase flow ratio is small, the flow distribution is dominated by the fluid resistance of the downstream channel, while when the two-phase flow ratio is large, it is dominated by the dynamics of the droplet population in the back cavity.

Key words: parallel microchannels, two-phase flow, distributions, mesoscale

中图分类号: 

  • TQ 021.1

图1

实验装置图1,2—注射泵;3—高速摄像仪;4—计算机;5—微通道芯片;6—光源;7—收集瓶"

图2

微通道结构"

表1

实验中使用流体的物性数据"

溶液类型ρ/(kg·m-3)μ/(mPa·s)γ/(mN·m-1)
道康宁-10 mPa·s硅油947.4210.165.81
道康宁-50 mPa·s硅油971.5454.704.81
道康宁-100 mPa·s硅油977.6598.903.59
去离子水998.250.955.81
30%甘油-水溶液1072.392.067.99
60%甘油-水溶液1160.387.8612.75

图3

微通道内液液两相流流型(连续相黏度54.70 mPa·s;分散相黏度0.95 mPa·s)"

图4

微通道中液液两相流流型及流型转变线"

图5

微通道中的流型及流型转变线(实心标记表示通道1;空心标记表示通道2)"

图6

不同操作条件下微通道中的液滴生成频率(实心标记为通道1;空心标记为通道2)"

图7

不同操作条件下流量分配的均一性"

图8

含空腔的并行微通道阻力模型图"

图9

不同操作条件下流体阻力的差异性"

图10

不同操作条件下后空腔中的液滴群流型(μc=54.70 mPa·s, μd=0.95 mPa·s)"

图11

不同操作条件下E(Rt)、E( f )及后空腔流型图"

1 Brandner J, Fichtner M, Schubert K. Electrically heated microstructure heat exchangers and reactors[C]//Microreaction Technology: Industrial Prospects, 2000: 607-616.
2 Peyman S A, Abou-Saleh R H, McLaughlan J R, et al. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles[J]. Lab on a Chip, 2012, 12(21): 4544-4552.
3 Adamson D N, Mustafi D, Zhang J X J, et al. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab on a Chip, 2006, 6(9): 1178-1186.
4 Sinton D. Energy: the microfluidic frontier[J]. Lab on a Chip, 2014, 14(17): 3127-3134.
5 Cai W F, Zhang J, Zhang X B, et al. Enhancement of CO2 absorption under Taylor flow in the presence of fine particles[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 135-143.
6 Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide[J]. Angewandte Chemie International Edition, 2014, 53(31): 7992-8002.
7 Kuijpers K P L, van Dijk M A H, Rumeur Q G, et al. A sensitivity analysis of a numbered-up photomicroreactor system[J]. Reaction Chemistry & Engineering, 2017, 2(2): 109-115.
8 Chambers R D, Fox M A, Holling D, et al. Elemental fluorine (part 16): Versatile thin-film gas-liquid multi-channel microreactors for effective scale-out[J]. Lab on a Chip, 2005, 5(2): 191-198.
9 Su Y H, Kuijpers K, Hessel V, et al. A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow[J]. Reaction Chemistry & Engineering, 2016, 1(1): 73-81.
10 Laporte M, Montillet A, Valle D D, et al. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput[J]. Journal of Food Engineering, 2016, 173: 25-33.
11 Kinstlinger I S, Miller J S. 3D-printed fluidic networks as vasculature for engineered tissue[J]. Lab on a Chip, 2016, 16(11): 2025-2043.
12 Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446.
13 Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions[J]. Physical Review Letters, 2005, 94(16): 164501.
14 Pohar A, Lakner M, Plazl I. Parallel flow of immiscible liquids in a microreactor: modeling and experimental study[J]. Microfluidics and Nanofluidics, 2012, 12(1/2/3/4): 307-316.
15 Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75.
16 Zhang J S, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 285-305.
17 Wang K, Li L T, Xie P, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 611-627.
18 Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33.
19 Zhao C X, Middelberg A P J. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7): 1394-1411.
20 Shui L L, Eijkel J C T, van den Berg A. Multiphase flow in micro- and nanochannels[J]. Sensors and Actuators B: Chemical, 2007, 121(1): 263-276.
21 Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886.
22 Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411.
23 Qiu M, Zha L, Song Y, et al. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization[J]. Reaction Chemistry & Engineering, 2019, 4(2): 351-361.
24 Fu T T, Ma Y G. Bubble formation and breakup dynamics in microfluidic devices: a review[J]. Chemical Engineering Science, 2015, 135: 343-372.
25 Du W, Fu T T, Zhu C Y, et al. Breakup dynamics for high-viscosity droplet formation in a flow-focusing device: symmetrical and asymmetrical ruptures[J]. AIChE Journal, 2016, 62(1): 325-337.
26 van Steijn V, Kreutzer M T, Kleijn C R. μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J]. Chemical Engineering Science, 2007, 62(24): 7505-7514.
27 Garstecki P, Gitlin I, DiLuzio W, et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device[J]. Applied Physics Letters, 2004, 85(13): 2649-2651.
28 Husny J, Cooper-White J J. The effect of elasticity on drop creation in T-shaped microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1/2/3): 121-136.
29 Xu J H, Li S W, Wang Y J, et al. Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device[J]. Applied Physics Letters, 2006, 88(13): 133506.
30 Cristini V, Tan Y C. Theory and numerical simulation of droplet dynamics in complex flows: a review[J]. Lab on a Chip, 2004, 4(4): 257-264.
31 Kockmann N, Gottsponer M, Roberge D M. Scale-up concept of single-channel microreactors from process development to industrial production[J]. Chemical Engineering Journal, 2011, 167(2/3): 718-726.
32 Zhao F, Cambié D, Janse J, et al. Scale-up of a luminescent solar concentrator-based photomicroreactor via numbering-up[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 422-429.
33 Tondeur D, Luo L G. Design and scaling laws of ramified fluid distributors by the constructal approach[J]. Chemical Engineering Science, 2004, 59(8/9): 1799-1813.
34 Commenge J M, Falk L, Corriou J P, et al. Optimal design for flow uniformity in microchannel reactors[J]. AIChE Journal, 2002, 48(2): 345-358.
35 Chen Y, Lei Z L, Zhang T H, et al. Flow distribution of hydrocarbon fuel in parallel minichannels heat exchanger[J]. AIChE Journal, 2018, 64(7): 2781-2791.
36 Emerson D R, Cieślicki K, Gu X J, et al. Biomimetic design of microfluidic manifolds based on a generalised Murray's law[J]. Lab on a Chip, 2006, 6(3): 447-454.
37 Lee J Y, Lee S J. Murray's law and the bifurcation angle in the arterial micro-circulation system and their application to the design of microfluidics[J]. Microfluidics and Nanofluidics, 2009, 8(1): 85-95.
38 Park Y J, Yu T, Yim S J, et al. A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems[J]. Lab on a Chip, 2018, 18(8): 1250-1258.
39 Cornish R J. Flow in a pipe of rectangular cross-section[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1928, 120(786): 691-700.
40 Fu T T, Ma Y G, Li H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5): 1920-1929.
41 Mi S, Jiang S K, Zhu C Y, et al. Mesoscale effect on bubble formation in step-emulsification devices with two parallel microchannels[J]. AIChE Journal, 2021, 67(1): e17075.
42 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281.
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica (Chimica), 2014, 44(3): 277-281.
43 Gada V H, Sharma A. Analytical and level-set method based numerical study on oil-water smooth/wavy stratified-flow in an inclined plane-channel[J]. International Journal of Multiphase Flow, 2012, 38(1): 99-117.
[1] 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
[2] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[3] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[4] 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538.
[5] 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560.
[6] 王瑞恒, 何品晶, 吕凡, 章骅. 垃圾焚烧飞灰水洗后三种固液分离方法参数比较及优化[J]. 化工学报, 2023, 74(4): 1712-1723.
[7] 刘庆超, 贾辉, 许逸飞, 路娜, 尹延梅, 王捷. 基于FBG力学传感的曝气生物滤池中剪切力分布研究[J]. 化工学报, 2023, 74(4): 1755-1763.
[8] 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
[9] 孟金琳, 汪宇, 张群锋, 叶光华, 周兴贵. 介孔材料低温氮气吸脱附的孔道网络模型[J]. 化工学报, 2023, 74(2): 893-903.
[10] 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706.
[11] 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720.
[12] 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427.
[13] 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869.
[14] 鲁统鹏, 潘晓林, 吴鸿飞, 李煜, 于海燕. 有机絮凝剂对铁矿相沉降性能影响及其吸附机理[J]. 化工学报, 2022, 73(9): 4122-4132.
[15] 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!