化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3090-3098.DOI: 10.11949/0438-1157.20220121
刘会影1(),贾胜坤1,2(),罗祎青1,2,袁希钢1,2,3()
收稿日期:
2022-01-21
修回日期:
2022-03-01
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
贾胜坤,袁希钢
作者简介:
刘会影(1997—),女,硕士研究生,基金资助:
Huiying LIU1(),Shengkun JIA1,2(),Yiqing LUO1,2,Xigang YUAN1,2,3()
Received:
2022-01-21
Revised:
2022-03-01
Online:
2022-07-05
Published:
2022-08-01
Contact:
Shengkun JIA,Xigang YUAN
摘要:
隔板精馏塔(DWC)在节能和节省设备投资方面具有十分突出的优势,隔板精馏塔中隔板位置是重要的设计变量,影响分离效果及能耗,当进料中含有气相时这种影响更加显著。选用苯、甲苯和对二甲苯三元物系,研究了进料的气相分率对隔板位置的影响并确定最优隔板位置。采用严格模拟方法,以年度总费用(TAC)为评价指标,比较不同进料气相分率下隔板塔的经济性,其中气相进料较液相进料TAC最高可节省23.33%。并通过灵敏度分析展示了在进料中含有气相时确定最优隔板位置的重要性。
中图分类号:
刘会影, 贾胜坤, 罗祎青, 袁希钢. 气相进料对隔板精馏塔优化设计的影响[J]. 化工学报, 2022, 73(7): 3090-3098.
Huiying LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Influence of vapor feed on optimal design of dividing wall column[J]. CIESC Journal, 2022, 73(7): 3090-3098.
变量 | 变量值 |
---|---|
进料组成/%(mol) | A:0.3;B:0.3;C:0.4 |
进料压力/kPa | 101.325 |
进料气相分率γf | 0/1 |
产品纯度要求/%(mol) | A:0.98; B:0.98; C:0.98 |
表1 进料状况和产品要求
Table 1 Feed condition and product request
变量 | 变量值 |
---|---|
进料组成/%(mol) | A:0.3;B:0.3;C:0.4 |
进料压力/kPa | 101.325 |
进料气相分率γf | 0/1 |
产品纯度要求/%(mol) | A:0.98; B:0.98; C:0.98 |
变量 | 工况a | 工况b | 工况c |
---|---|---|---|
进料气相分率γf | 0 | 1 | 1 |
结构变量 | |||
塔径D/m | 3.079 | 3.079 | 3.491 |
隔板位置参数β | 0.6376 | 0.6376 | 0.8221 |
各塔段塔板数 | |||
Ⅰ | 5 | 5 | 8 |
Ⅱ | 11 | 11 | 13 |
Ⅲ | 10 | 10 | 11 |
Ⅳ | 10 | 10 | 8 |
Ⅴ | 11 | 11 | 10 |
Ⅵ | 11 | 11 | 10 |
操作变量 | |||
进料流量F/(kmol/h) | 500 | 257 | 500 |
塔顶压力P/kPa | 32.95 | 32.95 | 52.85 |
回流比RR | 2.679 | 6.25 | 4.942 |
侧采分率Sf/%(mol) | 0.5806 | 0.3148 | 0.5602 |
再沸比BR | 2.145 | 1.959 | 1.267 |
液相分割比RL/%(mol) | 0.3285 | 0.4651 | 0.622 |
气相分割比RV/%(mol) | 0.5911 | 0.1281 | 0.4519 |
费用 | |||
设备费用/104 USD | 142.7 | 133.9 | 153.2 |
操作费用/104 USD | 109.3 | 54.79 | 69.18 |
TAC/104 USD | 156.9 | 99.43 | 120.3 |
(TAC/F)/(104 USD/kmol) | 0.3138 | 0.3869 | 0.2405 |
表2 不同进料条件下的设计变量和相关费用
Table 2 Design variables and related costs with different feed conditions
变量 | 工况a | 工况b | 工况c |
---|---|---|---|
进料气相分率γf | 0 | 1 | 1 |
结构变量 | |||
塔径D/m | 3.079 | 3.079 | 3.491 |
隔板位置参数β | 0.6376 | 0.6376 | 0.8221 |
各塔段塔板数 | |||
Ⅰ | 5 | 5 | 8 |
Ⅱ | 11 | 11 | 13 |
Ⅲ | 10 | 10 | 11 |
Ⅳ | 10 | 10 | 8 |
Ⅴ | 11 | 11 | 10 |
Ⅵ | 11 | 11 | 10 |
操作变量 | |||
进料流量F/(kmol/h) | 500 | 257 | 500 |
塔顶压力P/kPa | 32.95 | 32.95 | 52.85 |
回流比RR | 2.679 | 6.25 | 4.942 |
侧采分率Sf/%(mol) | 0.5806 | 0.3148 | 0.5602 |
再沸比BR | 2.145 | 1.959 | 1.267 |
液相分割比RL/%(mol) | 0.3285 | 0.4651 | 0.622 |
气相分割比RV/%(mol) | 0.5911 | 0.1281 | 0.4519 |
费用 | |||
设备费用/104 USD | 142.7 | 133.9 | 153.2 |
操作费用/104 USD | 109.3 | 54.79 | 69.18 |
TAC/104 USD | 156.9 | 99.43 | 120.3 |
(TAC/F)/(104 USD/kmol) | 0.3138 | 0.3869 | 0.2405 |
1 | Kaibel G. Distillation columns with vertical partitions[J]. Chemical Engineering & Technology - CET, 1987, 10(1): 92-98. |
2 | Fidkowski Z, Królikowski L. Minimum energy requirements of thermally coupled distillation systems[J]. AIChE Journal, 1987, 33(4): 643-653. |
3 | Ling H, Cai Z, Wu H, et al. Remixing control for divided-wall columns[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12694-12705. |
4 | Hernández S, Pereira-Pech S, Jiménez A, et al. Energy efficiency of an indirect thermally coupled distillation sequence[J]. The Canadian Journal of Chemical Engineering, 2008, 81(5): 1087-1091. |
5 | Amminudin K A, Smith R. Design and optimization of fully thermally coupled distillation columns[J]. Chemical Engineering Research and Design, 2001, 79(7): 716-724. |
6 | Hernández S, Jiménez A. Design of energy-efficient Petlyuk systems[J]. Computers & Chemical Engineering, 1999, 23(8): 1005-1010. |
7 | Ho Y C, Ward J D, Yu C C. Quantifying potential energy savings of divided wall columns based on degree of remixing[J]. Industrial & Engineering Chemistry Research, 2011, 50(3): 1473-1487. |
8 | Maralani L T, Yuan X G, Luo Y Q, et al. Numerical investigation on effect of vapor split ratio to performance and operability for dividing wall column[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 72-78. |
9 | 龚超, 余爱平, 罗祎青, 等. 完全能量耦合精馏塔的设计、模拟与优化[J]. 化工学报, 2012, 63(1): 177-184. |
Gong C, Yu A P, Luo Y Q, et al. Design, simulation and optimization of fully thermally coupled distillation column[J]. CIESC Journal, 2012, 63(1): 177-184. | |
10 | Kim Y H. Rigorous design of extended fully thermally coupled distillation columns[J]. Chemical Engineering Journal, 2002, 89(1/2/3): 89-99. |
11 | Amminudin K A, Smith R, Thong D Y C, et al. Design and optimization of fully thermally coupled distillation columns(Ⅰ): Preliminary design and optimization methodology[J]. Chemical Engineering Research and Design, 2001, 79(7): 701-715. |
12 | Wenzel S, Röhm H J. Design of complex distillation columns by overall-cost optimization[J]. Chemical Engineering & Technology, 2004, 27(5): 484-490. |
13 | 牟祖霖, 盖晓龙, 袁希钢, 等. 三组分精馏隔板塔的操作柔性模拟与分析[J]. 化工学报, 2016, 67(2): 573-579. |
Mu Z L, Ge X L, Yuan X G, et al. Simulation and analysis of operation flexibility of divided wall column for ternary distillation[J]. CIESC Journal, 2016, 67(2): 573-579. | |
14 | Ge X L, Ao C, Yuan X G, et al. Investigation of the effect of the vapor split ratio decision in design on operability for DWC by numerical simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13383-13390. |
15 | 敖琛, 袁希钢, 罗祎青, 等. 进料组成改变对隔板塔经济性影响的模拟[J]. 化学工业与工程, 2016, 33(6): 74-79. |
Ao C, Yuan X G, Luo Y Q, et al. Numerical simulation for economical behavior of DWC in case of changes in feed composition[J]. Chemical Industry and Engineering, 2016, 33(6): 74-79. | |
16 | 朱怀工, 王燕, 张敏卿. 进料性质对立式隔板塔操作特性的影响[J]. 化工进展, 2009, 28(4): 579-583. |
Zhu H G, Wang Y, Zhang M Q. Influence of feed property on the operation of dividing wall column[J]. Chemical Industry and Engineering Progress, 2009, 28(4): 579-583. | |
17 | 王维德, 黄颖芬, 晋正茂, 等. 进料热状况对精馏能耗影响[J]. 华侨大学学报(自然科学版), 2008, 29(2): 260-262. |
Wang W D, Huang Y F, Jin Z M, et al. Effect of thermal conditions of feed on energy consumption of distillation[J]. Journal of Huaqiao University (Natural Science), 2008, 29(2): 260-262. | |
18 | Olujić, Dejanović I, Kaibel B, et al. Dimensioning multipartition dividing wall columns[J]. Chemical Engineering & Technology, 2012, 35(8): 1392-1404. |
19 | Kang K J, Harvianto G R, Lee M. Hydraulic driven active vapor distributor for enhancing operability of a dividing wall column[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6493-6498. |
20 | Li F, Luo Y Q, Yuan X G. Equation-oriented optimization of a distillation column considering stage hydraulics[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13657-13668. |
21 | Dai X, Ye Q, Qin J W, et al. Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer[J]. Chemical Engineering & Processing: Process Intensification, 2016, 100: 49-64. |
22 | Qian X, Jia S K, Huang K J, et al. Optimal design of Kaibel dividing wall columns based on improved particle swarm optimization methods[J]. Journal of Cleaner Production, 2020, 273:123041. |
23 | Sun L Y, Wang Q Y, Li L M, et al. Design and control of extractive dividing wall column for separating benzene/cyclohexane mixtures[J]. Industrial & Engineering Chemistry Research, 2014, 53(19):8120-8131. |
24 | Quirante N, Javaloyes J, Caballero J A. Rigorous design of distillation columns using surrogate models based on Kriging interpolation[J]. AIChE Journal, 2015, 61(7): 2169-2187. |
25 | 马英杰. 采用虚拟瞬态连续性模型优化复杂精馏系统[D]. 天津: 天津大学, 2017. |
Ma Y J. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[D]. Tianjin: Tianjin University, 2017. | |
26 | Ma Y J, Luo Y Q, Yuan X G. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6266-6274. |
27 | Bennett D L, Agrawal R, Cook P J. New pressure drop correlation for sieve tray distillation columns[J]. AIChE Journal, 1983, 29(3): 434-442. |
28 | Dejanović I, Matijašević L, Jansen H, et al. Designing a packed dividing wall column for an aromatics processing plant[J]. Industrial & Engineering Chemistry Research, 2011, 50(9): 5680-5692. |
29 | Górak A, Olujić Z. Distillation: Equipment and Processes[M]. London: Academic Press, 2014: 307-315. |
30 | Dowling A W, Biegler L T. Rigorous optimization-based synthesis of distillation cascades without integer variables[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014: 55-60. |
31 | Dowling A W, Biegler L T. A framework for efficient large scale equation-oriented flowsheet optimization[J]. Computers & Chemical Engineering, 2015, 72: 3-20. |
32 | Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill Book Company, 1988: 30-216. |
33 | Long H, Clark J, Benyounes H, et al. Optimal design and economic evaluation of dividing-wall columns[J]. Chemical Engineering & Technology, 2016, 39(6): 1077-1086. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 290
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||