化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3193-3201.DOI: 10.11949/0438-1157.20220240
王姝焱1,2(),张瑞阳2(
),刘润2,刘凯2,周莹1,2(
)
收稿日期:
2022-02-24
修回日期:
2022-05-05
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
张瑞阳,周莹
作者简介:
王姝焱(1997—),女,硕士研究生,基金资助:
Shuyan WANG1,2(),Ruiyang ZHANG2(
),Run LIU2,Kai LIU2,Ying ZHOU1,2(
)
Received:
2022-02-24
Revised:
2022-05-05
Online:
2022-07-05
Published:
2022-08-01
Contact:
Ruiyang ZHANG,Ying ZHOU
摘要:
近年来,近地面臭氧已成为我国仅次于PM2.5的大气污染物。催化臭氧分解技术具有条件温和、绿色环保的优点,被认为是极具潜力的臭氧治理技术。然而,水对催化剂的毒害作用是制约催化臭氧分解技术实际应用的重要问题之一。基于原位生长策略,制备了新型偏硼酸锰/氧掺杂氮化硼[Mn(BO2)2/BNO]臭氧分解催化剂。Mn(BO2)2与BNO界面之间强烈的相互作用诱导电子定向转移至Mn(BO2)2,不仅促进了臭氧的分解,而且抑制了水的吸附,避免了水对活性位点的毒害作用。催化活性测试表明,10%Mn(BO2)2负载BNO样品在60%湿度下20 min内表现出最高的臭氧分解性能(92%)。这为获得优异性能的臭氧分解催化材料提供了新的设计思路。
中图分类号:
王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO2)2/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
Shuyan WANG, Ruiyang ZHANG, Run LIU, Kai LIU, Ying ZHOU. Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance[J]. CIESC Journal, 2022, 73(7): 3193-3201.
图6 BNO、3%Mn/BNO和10%Mn/BNO的氮气等温吸脱附曲线和孔径分布曲线
Fig.6 N2 isotherm adsorption and desorption, pore size distribution curves of BNO, 3%Mn/BNO and 10%Mn/BNO samples
图7 Mn(BO2)2和 BNO的结构以及H2O和O3在材料表面上的吸附模拟情况
Fig.7 Structures of Mn(BO2)2 and BNO, and theoretical calculations of water and ozone adsorption on material surfaces
1 | Lu X, Ye X P, Zhou M, et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China[J]. Nature Communications, 2021, 12: 5021. |
2 | 邱晶, 赵明, 王健礼, 等. 地表臭氧分解用氧化锰研究进展[J]. 材料导报, 2021, 35(21): 21050-21057. |
Qiu J, Zhao M, Wang J L, et al. Research progress of manganese dioxide catalyst for ozone decomposition[J]. Materials Reports, 2021, 35(21): 21050-21057. | |
3 | Lu X, Zhang L, Wang X L, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters, 2020,7(4): 240-247. |
4 | Yang S, Zhu Z X, Wei F, et al. Carbon nanotubes/activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone[J]. Building and Environment, 2017, 125: 60-66. |
5 | Seltzer K M, Shindell D T, Malley C S. Measurement-based assessment of health burdens from long-term ozone exposure in the United States, Europe, and China[J]. Environmental Research Letters, 2018, 13(10): 104018. |
6 | 张瑞阳, 王姝焱, 黎邦鑫, 等. 气相臭氧分解催化材料的研究进展[J]. 材料导报, 2021, 35(21): 21037-21049. |
Zhang R Y, Wang S Y, Li B X, et al. Research progress of gaseous ozone decomposition catalysts[J]. Materials Reports, 2021, 35(21): 21037-21049. | |
7 | Shao X F, Li X T, Ma J Z, et al. Terminal hydroxyl groups on Al2O3 supports influence the valence state and dispersity of Ag nanoparticles: implications for ozone decomposition[J]. ACS Omega, 2021, 6(16): 10715-10722. |
8 | Li X T, Ma J Z, He H. Tuning the chemical state of silver on Ag-Mn catalysts to enhance the ozone decomposition performance[J]. Environmental Science & Technology, 2020, 54(18): 11566-11575. |
9 | Yang L, Ma J Z, Li X T, et al. Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions[J]. Catalysis Science & Technology, 2020, 10(22): 7671-7680. |
10 | Ji J, Yu Y, Cao S, et al. Enhanced activity and water tolerance promoted by Ce on MnO/ZSM-5 for ozone decomposition[J]. Chemosphere, 2021, 280: 130664. |
11 | 黎邦鑫, 张骞, 肖杰, 等. Fe增强Ni2(CO3)(OH)2臭氧分解抗湿性与催化性能[J]. 无机材料学报, 2022, 37(1): 45-50. |
Li B X, Zhang Q, Xiao J, et al. Iron-doping enhanced basic nickel carbonate for moisture resistance and catalytic performance of ozone decomposition[J]. Journal of Inorganic Materials, 2022, 37(1): 45-50. | |
12 | Sun Z B, Si Y N, Zhao S N, et al. Ozone decomposition by a manganese-organic framework over the entire humidity range[J]. Journal of the American Chemical Society, 2021, 143(13): 5150-5157. |
13 | Liang X S, Wang L S, Wen T C, et al. Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition[J]. Science of the Total Environment, 2022, 804: 150161. |
14 | Gong S Y, Chen J Y, Wu X F, et al. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition[J]. Catalysis Communications, 2018, 106: 25-29. |
15 | Rahimi M G, Wang A Q, Ma G J, et al. A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition[J]. RSC Advances, 2020, 10(67): 40916-40922. |
16 | Wei L L, Chen H X, Wei Y, et al. Ce-promoted Mn/ZSM-5 catalysts for highly efficient decomposition of ozone[J]. Journal of Environmental Sciences, 2021, 103: 219-228. |
17 | Zhu G X, Zhu W, Lou Y, et al. Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition[J]. Nature Communications, 2021, 12: 4152. |
18 | Gao L J, Fu Q, Wei M M, et al. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells[J]. ACS Catalysis, 2016, 6(10): 6814-6822. |
19 | Zheng Q, Cao Y H, Huang N J, et al. Selective exposure of BiOI oxygen-rich {110} facet induced by BN nanosheets for enhanced photocatalytic oxidation performance[J]. Acta Physico-Chimica Sinica, 2021, 37(8): 2009063. |
20 | Cao Y H, Zhang R Y, Zheng Q, et al. Dual functions of O-atoms in the g-C3N4/BO0.2N0.8 interface: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic molecular oxygen activation[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34432-34440. |
21 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 1996, 54(16): 11169-11186. |
22 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
23 | Cao Y H, Zhang R Y, Zhou T L, et al. B—O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9935-9943. |
24 | 何忠义, 贾广跃, 张萌萌, 等. 纳米六方氮化硼负载离子液体润滑添加剂的摩擦学特性[J]. 化工学报, 2020, 71(9): 4303-4313. |
He Z Y, Jia G Y, Zhang M M, et al. Tribological performance of hexagonal boron nitride supported ionic liquid lubricant additives[J]. CIESC Journal, 2020, 71(9): 4303-4313. | |
25 | Neumair S C, Perfler L, Huppertz H. Synthesis and characterization of the manganese borate α-MnB2O4 [J]. Zeitschrift Für Naturforschung B, 2011, 66: 882-888. |
26 | Jia Y Z, Gao S Y, Xia S P, et al. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(7): 1291-1297. |
27 | Cao R R, Li L X, Zhang P Y. Macroporous MnO2-based aerogel crosslinked with cellulose nanofibers for efficient ozone removal under humid condition[J]. Journal of Hazardous Materials, 2021, 407: 124793. |
28 | Cao Y H, Zheng Q, Rao Z Q, et al. InP quantum dots on g-C3N4 nanosheets to promote molecular oxygen activation under visible light[J]. Chinese Chemical Letters, 2020, 31(10): 2689-2692. |
29 | Liu Z K, Yan B, Meng S Y, et al. Plasma tuning local environment of hexagonal boron nitride for oxidative dehydrogenation of propane[J]. Angewandte Chemie-International Edition, 2021, 60(36): 19691-19695. |
30 | Jiang L S, Xie Y, He F, et al. Facile synthesis of GO as middle carrier modified flower-like BiOBr and C3N4 nanosheets for simultaneous treatment of chromium (Ⅵ) and tetracycline[J]. Chinese Chemical Letters, 2021, 32(7): 2187-2191. |
31 | Geng Z B, Wang Y X, Liu J H, et al. δ-MnO2-Mn3O4 nanocomposite for photochemical water oxidation: active structure stabilized in the interface[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27825-27831. |
32 | Sainsbury T, Satti A, May P, et al. Oxygen radical functionalization of boron nitride nanosheets[J]. Journal of the American Chemical Society, 2012, 134(45): 18758-18771. |
33 | Chen X, Zhao Z L, Liu S, et al. Ce-Fe-Mn ternary mixed-oxide catalysts for catalytic decomposition of ozone at ambient temperatures[J]. Journal of Rare Earths, 2020, 38(2): 175-181. |
34 | Zhang X D, Bi F K, Zhu Z Q, et al. The promoting effect of H2O on rod-like MnCeO x derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation[J]. Applied Catalysis B: Environmental, 2021, 297: 120393. |
35 | Tao L G, Zhang Z Q, Chen P J, et al. Thin-felt Al-fiber-structured Pd-Co-MnO x /Al2O3 catalyst with high moisture resistance for high-throughput O3 decomposition[J]. Applied Surface Science, 2019, 481: 802-810. |
36 | Zhu G X, Zhu J G, Jiang W J, et al. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination[J]. Applied Catalysis B: Environmental, 2017, 209: 729-737. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[9] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[13] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[14] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[15] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||