化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5305-5313.DOI: 10.11949/0438-1157.20221230
霍猛(), 彭晓婉, 赵金, 马秋伟, 邓春(), 刘蓓, 陈光进
收稿日期:
2022-09-09
修回日期:
2022-11-08
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
邓春
作者简介:
霍猛(1998—),男,硕士研究生,qq1170915991@163.com
基金资助:
Meng HUO(), Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG(), Bei LIU, Guangjin CHEN
Received:
2022-09-09
Revised:
2022-11-08
Online:
2022-12-05
Published:
2023-01-17
Contact:
Chun DENG
摘要:
目前已有的CO吸收方法中,离子液体吸收法由于其独特的优势而备受关注。在本研究中,使用COSMO-RS模型以293.15 K下离子液体对CO的选择性和黏度为指标对350种离子液体进行溶剂筛选,分析了离子液体阴阳离子构型对CO选择性的影响。在此基础上,在实验室合成了离子液体并测定了其黏度随温度的变化曲线。随后通过傅里叶变换红外光谱分析表明质子型离子液体中存在有分子间氢键作用力。使用高压透明蓝宝石釜进行了相平衡实验,测定了溶解度曲线,通过实验分析气液比对分离因子的影响。实验结果表明,在293.15 K、2.1 MPa、气液比为77.75条件下,离子液体对CO/H2的分离因子可达到109.29。最后,通过FTIR证明了离子液体的稳定性,这意味着该溶剂在工业应用中具有一定的潜力。
中图分类号:
霍猛, 彭晓婉, 赵金, 马秋伟, 邓春, 刘蓓, 陈光进. 基于COSMO-RS的离子液体吸收CO的溶剂筛选及H2/CO分离实验[J]. 化工学报, 2022, 73(12): 5305-5313.
Meng HUO, Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG, Bei LIU, Guangjin CHEN. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids[J]. CIESC Journal, 2022, 73(12): 5305-5313.
名称 | 纯度/ %(mol) | 供应商 |
---|---|---|
1-乙基咪唑盐酸盐 | 98 | 河南普赛化工产品有限公司 |
氯化亚铜 | 97 | 上海阿拉丁生化科技股份有限公司 |
H2 | 99.999 | 北京氦普北分气体工业有限公司 |
CO | 99.999 | 北京氦普北分气体工业有限公司 |
H2/CO混合气 | 99.999 | 北京氦普北分气体工业有限公司 |
表1 材料名称、纯度和供应商
Table 1 Material name, purity and supplier
名称 | 纯度/ %(mol) | 供应商 |
---|---|---|
1-乙基咪唑盐酸盐 | 98 | 河南普赛化工产品有限公司 |
氯化亚铜 | 97 | 上海阿拉丁生化科技股份有限公司 |
H2 | 99.999 | 北京氦普北分气体工业有限公司 |
CO | 99.999 | 北京氦普北分气体工业有限公司 |
H2/CO混合气 | 99.999 | 北京氦普北分气体工业有限公司 |
图8 常压下离子液体[EimH][CuCl2]黏度随温度变化的黏度-温度曲线
Fig.8 The viscosity-temperature curve of ionic liquid [EimH][CuCl2] at atmospheric pressure as a function of temperature
T/K | PE/MPa | ϕ | 气体 组分 | Sv/(mol·L-1) | Sc/(mol·bar-1·L-1) | β |
---|---|---|---|---|---|---|
293.15 | 2.1 | 77.75 | CO | 0.0312 | 0.8196 | 109.29 |
H2 | 0.1579 | 0.0075 | 0.0092 | |||
101.88 | CO | 0.0313 | 0.3982 | 82.12 | ||
H2 | 0.0966 | 0.0048 | 0.0122 |
表2 CO含量为1%(mol)的CO/H2混合气分离实验结果
Table 2 Experimental results of CO/H2 gas mixture separation with 1%(mol) CO
T/K | PE/MPa | ϕ | 气体 组分 | Sv/(mol·L-1) | Sc/(mol·bar-1·L-1) | β |
---|---|---|---|---|---|---|
293.15 | 2.1 | 77.75 | CO | 0.0312 | 0.8196 | 109.29 |
H2 | 0.1579 | 0.0075 | 0.0092 | |||
101.88 | CO | 0.0313 | 0.3982 | 82.12 | ||
H2 | 0.0966 | 0.0048 | 0.0122 |
1 | Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. |
2 | Kan T, Sun X Y, Wang H Y, et al. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy & Fuels, 2012, 26(6): 3604-3611. |
3 | Garba M D, Galadima A. Catalytic hydrogenation of hydrocarbons for gasoline production[J]. Journal of Physical Science, 2018, 29(2): 153-176. |
4 | Dujjanutat P, Kaewkannetra P. Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/palm kernel oils[J]. Renewable Energy, 2020, 147: 464-472. |
5 | Sun Y F, Li C S, Zhang A M. Preparation of Ni/CNTs catalyst with high reducibility and their superior catalytic performance in benzene hydrogenation[J]. Applied Catalysis A: General, 2016, 522: 180-187. |
6 | Wee J H. Applications of proton exchange membrane fuel cell systems[J]. Renewable and Sustainable Energy Reviews, 2007, 11(8): 1720-1738. |
7 | El Hajj Chehade A M, Daher E A, Assaf J C, et al. Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33235-33247. |
8 | Turner J, Sverdrup G, Mann M K, et al. Renewable hydrogen production[J]. International Journal of Energy Research, 2008, 32(5): 379-407. |
9 | Li Y J, Luo H. Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization[J]. Chemical Engineering Research and Design, 2015, 93: 632-639. |
10 | Zhu X C, Shi Y X, Li S, et al. Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13305-13317. |
11 | Wu F, Zhao Q H, Tao L F, et al. Solubility of carbon monoxide and hydrogen in methanol and methyl formate: 298—373 K and 0.3—3.3 MPa[J]. Journal of Chemical & Engineering Data, 2019, 64(12): 5609-5621. |
12 | Yang T X, Chung T S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor[J]. International Journal of Hydrogen Energy, 2013, 38(1): 229-239. |
13 | 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J].化工学报,2020, 71(1):138-147. |
Liu J J, Fu X, Xu Y J. Progress on carbon monoxide removal using ionic liquids [J]. CIESC Journal, 2020, 71(1): 138-147. | |
14 | Ohlin C A, Dyson P J, Laurenczy G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation[J]. Chemical Communications, 2004(9): 1070-1071. |
15 | Raeissi S, Florusse L J, Peters C J. Purification of flue gas by ionic liquids: carbon monoxide capture in[bmim][Tf 2N][J]. AIChE Journal, 2013, 59(10): 3886-3891. |
16 | Lei Z G, Shen P, Dai C N. Solubility of CO in the mixture of ionic liquid and ZIF: an experimental and modeling study[J]. Journal of Chemical & Engineering Data, 2016, 61(2): 846-855. |
17 | Tao D J, Chen F F, Tian Z Q, et al. Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions[J]. Angewandte Chemie, 2017, 129(24): 6947-6951. |
18 | Shmukler L E, Fedorova I V, Fadeeva Y A, et al. Alkylimidazolium protic ionic liquids: structural features and physicochemical properties[J]. ChemPhysChem, 2022, 23(4): e202100772. |
19 | Shmukler L E, Fedorova I V, Fadeeva Y A, et al. The physicochemical properties and structure of alkylammonium protic ionic liquids of R n H4- n NX (n=1—3) family. A mini-review[J]. Journal of Molecular Liquids, 2021, 321: 114350. |
20 | Bernardino K, Ribeiro M C C. Hydrogen-bonding and symmetry breaking in the protic ionic liquid 1-ethylimidazolium nitrate[J]. Vibrational Spectroscopy, 2022, 120: 103358. |
21 | Li P F, Shang D W, Tu W H, et al. NH3 absorption performance and reversible absorption mechanisms of protic ionic liquids with six-membered N-heterocyclic cations[J]. Separation and Purification Technology, 2020, 248: 117087. |
22 | Huang H Y, Padin J, Yang R T. Comparison of π-complexations of ethylene and carbon monoxide with Cu+ and Ag+ [J]. Industrial & Engineering Chemistry Research, 1999, 38(7): 2720-2725. |
23 | Repper S E, Haynes A, Ditzel E J, et al. Infrared spectroscopic study of absorption and separation of CO using copper ( Ⅰ ) -containing ionic liquids[J]. Dalton Transactions, 2017, 46(9): 2821-2828. |
24 | Tao D J, An X C, Gao Z T, et al. Cuprous-based composite ionic liquids for the selective absorption of CO: experimental study and thermodynamic analysis[J]. AIChE Journal, 2022, 68(5): e17631. |
25 | 刘玉梅. 离子液体强化吸收一氧化碳和醇解反应过程研究[D]. 南昌: 江西师范大学,2019. |
Liu Y M. Study on ionic liquids for intensified CO absorption and alcoholysis reaction processes[D]. Nanchang: Jiangxi Normal University, 2019. | |
26 | Cui G K, Jiang K, Liu H Y, et al. Highly efficient CO removal by active cuprous-based ternary deep eutectic solvents[HDEEA][Cl]+ CuCl + EG[J]. Separation and Purification Technology, 2021, 274: 118985. |
27 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
Zhang Z G, Zhang D B, Zhang Q Q, et al. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS[J]. CIESC Journal, 2019, 70(1): 146-153. | |
28 | Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J. Chem. Soc., Perkin Trans. 2, 1993(5): 799-805. |
29 | Klamt A. The COSMO and COSMO-RS solvation models[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1(5): 699-709. |
30 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
31 | 杨倩. 离子液体-CO(H2)体系的UNIFAC模型和实验研究[D]. 北京: 北京化工大学, 2014. |
Yang Q. UNIFAC model for ionic liquid-CO (H2) systems: an experimental and modeling study[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
32 | Liu H, Liu B, Lin L C, et al. A hybrid absorption–adsorption method to efficiently capture carbon[J]. Nature Communications, 2014, 5: 5147. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[8] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[9] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[12] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[15] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 609
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||