化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4109-4128.DOI: 10.11949/0438-1157.20230888
收稿日期:
2023-08-28
修回日期:
2023-10-04
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
孙志高
作者简介:
黄志国(1994—),男,硕士研究生,1178736316@qq.com
基金资助:
Received:
2023-08-28
Revised:
2023-10-04
Online:
2023-10-25
Published:
2023-12-22
Contact:
Zhigao SUN
摘要:
利用相变材料的潜热储能,是解决可再生能源不连续问题的有效途径之一。以钛酸四丁酯(TBT)为前体,采用界面水解-缩聚法制备了纳米相变微胶囊。纳米相变微胶囊的热导率提高到原材料的215%,约为0.43 W/(m·K),相变温度为42.4℃,相变潜热达到234.7 J/g,纳米相变微胶囊强化了相变材料的传热性能蓄热,适用于太阳能热水系统。建立了三维计算模型,利用Fluent软件对填充床进行了数值模拟,研究了顺排结构(SS)和叉排结构(CS)填充床的蓄/放热性能。分析了两种结构化填充床在不同流速下,液相率、温度场和蓄/放热功率的变化情况。结果表明,随着流速的增大,SS和CS的熔化/凝固速率均加快。在相同流速下,CS比SS熔化/凝固更快。SS和CS在不同的阶段升温速率不同,与SS相比,CS的温度变化更加均匀。在较低流速(2 L/min)下,SS和CS蓄/放热持续时间较长,变化较小。在不同的流速(2、4和6 L/min)下,CS的峰值蓄热功率是SS的1.7倍~1.9倍,峰值放热功率是SS的1.8倍~2.0倍。
中图分类号:
黄志国, 孙志高. 纳米相变微胶囊在蓄热结构化填充床中的应用模拟[J]. 化工学报, 2023, 74(10): 4109-4128.
Zhiguo HUANG, Zhigao SUN. Simulation of the application of nano-scale phase change microcapsules for thermal storage in structured packed bed[J]. CIESC Journal, 2023, 74(10): 4109-4128.
原料及试剂 | 化学式/缩写 | 规格 | 生产厂家 |
---|---|---|---|
正二十二烷 | C22H46/n-docosane | AR, 纯度≥98.0% | Aladdin |
钛酸四丁酯 | C16H36O4Ti/ TBT | AR, 纯度≥99.0% | Aladdin |
无水乙醇 | C2H5OH | AR, 纯度≥99.7% | 上海联试化工试剂有限公司 |
去离子水 | H2O | — | 实验室自制 |
盐酸 | HCl | AR, 含量36.0%~38.0% | 永华化学科技有限公司 |
十二烷基硫酸钠 | C12H25SO4Na/SDS | AR, 纯度≥98.0% | Aladdin |
表1 实验材料
Table 1 Experimental materials
原料及试剂 | 化学式/缩写 | 规格 | 生产厂家 |
---|---|---|---|
正二十二烷 | C22H46/n-docosane | AR, 纯度≥98.0% | Aladdin |
钛酸四丁酯 | C16H36O4Ti/ TBT | AR, 纯度≥99.0% | Aladdin |
无水乙醇 | C2H5OH | AR, 纯度≥99.7% | 上海联试化工试剂有限公司 |
去离子水 | H2O | — | 实验室自制 |
盐酸 | HCl | AR, 含量36.0%~38.0% | 永华化学科技有限公司 |
十二烷基硫酸钠 | C12H25SO4Na/SDS | AR, 纯度≥98.0% | Aladdin |
名称 | 型号 | 性能参数 | 厂家 |
---|---|---|---|
生物显微镜 | XSP-BM-3C | 放大倍数40×~1600× | 上海彼爱姆光学仪器制造有限公司 |
赛多利斯电子天平 | BSA224S | ±0.01 mg, 0~220 g | 德国赛多利斯有限公司 |
数控超声波清洗器 | KQ100DE | 加热温度10~80℃ | 昆山市超声仪器有限公司 |
均质乳化机 | XFJ300-S | 100~20000 r/min | 上海标本模型厂 |
电动搅拌器 | JJ-1 | 0~2000 r/min | 常州市西城新瑞仪器厂 |
微电热恒温水槽 | THD-2015 | ±0.1℃, -20~99℃ | 宁波天恒仪器厂 |
循环水真空泵 | SHZ-D(Ⅲ) ABS | -0.1~0 MPa | 上海力辰邦西仪器有限公司 |
鼓风干燥箱 | DHG-9070A | 加热温度10~100℃ | 上海精宏实验设备有限公司 |
差示扫描量热仪 | NETZSCH DSC 200F3 | 精度±0.05℃, -180~+725 ℃ | 德国耐驰仪器制造有限公司 |
扫描电子显微镜 | Hitachi Regulus8100 | 放大倍数20×~1000000× | 日立公司 |
傅里叶红外光谱分析仪 | Thermo Scientific Nicolet iS20 | 分辨率4 cm-1, 400~4000 cm-1 | 美国Thermo Fisher Scientific公司 |
热导率测定仪 | DRE-Ⅲ | 0.001~100 W/(m·K) | 湘潭湘仪仪器有限公司 |
旋转黏度计 | NDJ-79 | 1~1×106 mPa·s | 上海昌吉地质仪器有限公司 |
高低温试验箱 | BPHJ-500B | 控制范围:-40℃~120℃ | 上海一恒科学仪器有限公司 |
表2 实验仪器
Table 2 Experimental instruments
名称 | 型号 | 性能参数 | 厂家 |
---|---|---|---|
生物显微镜 | XSP-BM-3C | 放大倍数40×~1600× | 上海彼爱姆光学仪器制造有限公司 |
赛多利斯电子天平 | BSA224S | ±0.01 mg, 0~220 g | 德国赛多利斯有限公司 |
数控超声波清洗器 | KQ100DE | 加热温度10~80℃ | 昆山市超声仪器有限公司 |
均质乳化机 | XFJ300-S | 100~20000 r/min | 上海标本模型厂 |
电动搅拌器 | JJ-1 | 0~2000 r/min | 常州市西城新瑞仪器厂 |
微电热恒温水槽 | THD-2015 | ±0.1℃, -20~99℃ | 宁波天恒仪器厂 |
循环水真空泵 | SHZ-D(Ⅲ) ABS | -0.1~0 MPa | 上海力辰邦西仪器有限公司 |
鼓风干燥箱 | DHG-9070A | 加热温度10~100℃ | 上海精宏实验设备有限公司 |
差示扫描量热仪 | NETZSCH DSC 200F3 | 精度±0.05℃, -180~+725 ℃ | 德国耐驰仪器制造有限公司 |
扫描电子显微镜 | Hitachi Regulus8100 | 放大倍数20×~1000000× | 日立公司 |
傅里叶红外光谱分析仪 | Thermo Scientific Nicolet iS20 | 分辨率4 cm-1, 400~4000 cm-1 | 美国Thermo Fisher Scientific公司 |
热导率测定仪 | DRE-Ⅲ | 0.001~100 W/(m·K) | 湘潭湘仪仪器有限公司 |
旋转黏度计 | NDJ-79 | 1~1×106 mPa·s | 上海昌吉地质仪器有限公司 |
高低温试验箱 | BPHJ-500B | 控制范围:-40℃~120℃ | 上海一恒科学仪器有限公司 |
流速/(L/min) | 峰值蓄热功率/(W/m2) | 峰值放热功率/(W/m2) | ||
---|---|---|---|---|
SS | CS | SS | CS | |
2 | 196.2 | 335.7 | -161.5 | -285.2 |
4 | 366.1 | 664.4 | -284.5 | -551.4 |
6 | 513.9 | 967.7 | -385.3 | -787.0 |
表3 SS和CS峰值蓄放热功率
Table 3 Peak storage/release power of SS and CS
流速/(L/min) | 峰值蓄热功率/(W/m2) | 峰值放热功率/(W/m2) | ||
---|---|---|---|---|
SS | CS | SS | CS | |
2 | 196.2 | 335.7 | -161.5 | -285.2 |
4 | 366.1 | 664.4 | -284.5 | -551.4 |
6 | 513.9 | 967.7 | -385.3 | -787.0 |
1 | Yang M C, Moghimi M A, Loillier R, et al. Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications[J]. Applied Energy, 2023, 336: 120848. |
2 | Ning Z Z, Zhang X L, Ji J, et al. Research progress of phase change thermal storage technology in air-source heat pump[J]. Journal of Energy Storage, 2023, 64: 107114. |
3 | Kumar L, Hasanuzzaman M, Rahim N A. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: a review[J]. Energy Conversion and Management, 2019, 195: 885-908. |
4 | Yuan M D, Xu C, Wang T Y, et al. Supercooling suppression and crystallization behaviour of erythritol/expanded graphite as form-stable phase change material[J]. Chemical Engineering Journal, 2021, 413: 127394. |
5 | Zhang S, Feng D L, Shi L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. |
6 | Mahdi J M, Nsofor E C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986. |
7 | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
Jiang Z, Zou B Y, Cong L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. | |
8 | 刘庆祎, 肖桐, 孙文杰, 等. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882. |
Liu Q Y, Xiao T, Sun W J, et al. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. CIESC Journal, 2022, 73(5): 1863-1882. | |
9 | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12): 5066-5085. |
Li Z, Li B R, Chen H Z, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
10 | 张万鑫, 孙志高. TDA-HDA/膨胀石墨复合相变材料的制备及性能研究[J]. 功能材料, 2023, 54(3): 3106-3112. |
Zhang W X, Sun Z G. Preparation and properties of TDA-HDA/expanded graphite composite phase change materials[J]. Journal of Functional Materials, 2023, 54(3): 3106-3112. | |
11 | 刘昌会, 张海悦, 李业美, 等. 低共熔溶剂在储能与传热方面的研究进展[J]. 化工学报, 2021, 72(10): 4973-4986. |
Liu C H, Zhang H Y, Li Y M, et al. Recent advances of deep eutectic solvents in energy storage and heat transfer[J]. CIESC Journal, 2021, 72(10): 4973-4986. | |
12 | 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297. |
Zhou S X, Zhang X L, Liu S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297. | |
13 | Fernandez A I, Martínez M, Segarra M, et al. Selection of materials with potential in sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1723-1729. |
14 | 唐宗斌, 陶于兵, 蔺晨辉, 等. 槽式太阳能集热与相变蓄热耦合模型(Ⅱ): 性能优化[J]. 太阳能学报, 2014, 35(11): 2145-2151. |
Tang Z B, Tao Y B, Lin C H, et al. Numerical study on coupling performance of solar PTC and LHS unit(Ⅱ): Performance optimization[J]. Acta Energiae Solaris Sinica, 2014, 35(11): 2145-2151. | |
15 | 于楠, 陈超, 蔺洁, 等. 应用于太阳能相变蓄热PC构件升温养护建筑的复合相变材料热物性[J]. 化工进展, 2021, 40(1): 297-304. |
Yu N, Chen C, Lin J, et al. Thermal properties of phase change materials used in buildings for solar-phase change thermal storage curing of precast concrete components[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 297-304. | |
16 | 赵运超, 时雨, 樊智轩, 等. 夏热冬冷地区相变屋面隔热技术研究进展[J]. 化工新型材料, 2023, 51(6): 250-255. |
Zhao Y C, Shi Y, Fan Z X, et al. Research progress of phase change roof insulation technology in hot summer and cold winter areas[J]. New Chemical Materials, 2023, 51(6): 250-255. | |
17 | 舒钊, 钟珂, 肖鑫, 等. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
Shu Z, Zhong K, Xiao X, et al. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. | |
18 | 李沐, 李亚溪, 李传常. 相变储冷技术及其在空调系统中的应用[J]. 储能科学与技术, 2023, 12(1): 180-197. |
Li M, Li Y X, Li C C. Phase change cold storage technology and its application in air conditioning system[J]. Energy Storage Science and Technology, 2023, 12(1): 180-197. | |
19 | 杨晋, 殷勇高. 空调蓄冷用相变材料的研究进展[J]. 制冷学报, 2022, 43(3): 37-44. |
Yang J, Yin Y G. Research progress of phase change materials for cold thermal energy storage in air-conditioners[J]. Journal of Refrigeration, 2022, 43(3): 37-44. | |
20 | 李洋, 张欣硕, 李馨男, 等. 纳米复合相变蓄冷材料的制备及蓄冷特性分析[J]. 农业工程学报, 2022, 38(23): 284-292. |
Li Y, Zhang X S, Li X N, et al. Preparation of nano-composite phase change thermal storage material and analysis of its thermal storage characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(23): 284-292. | |
21 | 金云飞, 武卫东, 伏舜宇, 等. 低温冷链物流用相变材料的优化及应用[J]. 制冷学报, 2021, 42(6): 106-113. |
Jin Y F, Wu W D, Fu S Y, et al. Optimization and application of phase change materials for low-temperature cold chain logistics[J]. Journal of Refrigeration, 2021, 42(6): 106-113. | |
22 | Khobragade S, Devanuri J K. Energy and exergy analyses of simultaneous charging and discharging latent heat storage system at different inclination angles—an experimental study[J]. Journal of Energy Resources Technology, 2021, 143(7): 070907. |
23 | Omojaro P, Breitkopf C. Investigating and modeling of simultaneous charging and discharging of a PCM heat exchanger[J]. Energy Procedia, 2014, 48: 413-422. |
24 | Maccarini A, Hultmark G, Bergsøe N C, et al. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings[J]. Sustainable Cities and Society, 2018, 42: 384-395. |
25 | Sodhi G S, Muthukumar P. Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution[J]. Renewable Energy, 2021, 171: 299-314. |
26 | Murray R E, Groulx D. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system (part 1): Consecutive charging and discharging[J]. Renewable Energy, 2014, 62: 571-581. |
27 | Fang Y, Qu Z G, Zhang J F, et al. Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material[J]. Applied Energy, 2020, 275: 115353. |
28 | Mahdavi A, Erfani Moghaddam M A, Mahmoudi A. Simultaneous charging and discharging of multi-tube heat storage systems using copper fins and Cu nanoparticles[J]. Case Studies in Thermal Engineering, 2021, 27: 101343. |
29 | Kadivar M R, Moghimi M A, Sapin P, et al. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store[J]. Journal of Energy Storage, 2019, 26: 101030. |
30 | Yang X P, Cai Z D. An analysis of a packed bed thermal energy storage system using sensible heat and phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118651. |
31 | Yin H B, Ding J, Yang X X. Experimental research on thermal characteristics of a hybrid thermocline heat storage system[J]. Applied Thermal Engineering, 2014, 62(1): 293-301. |
32 | Reddy K S, Jawahar V, Sivakumar S, et al. Performance investigation of single-tank thermocline storage systems for CSP plants[J]. Solar Energy, 2017, 144: 740-749. |
33 | Li C, Li Q, Ding Y L. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials[J]. Applied Energy, 2019, 247: 374-388. |
34 | Bhagat K, Saha S K. Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant[J]. Renewable Energy, 2016, 95: 323-336. |
35 | Karthikeyan S, Ravikumar Solomon G, Kumaresan V, et al. Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications[J]. Energy Conversion and Management, 2014, 78: 74-80. |
36 | Mawire A, Lentswe K A, Shobo A. Performance comparison of four spherically encapsulated phase change materials for medium temperature domestic applications[J]. Journal of Energy Storage, 2019, 23: 469-479. |
37 | Vikram M P, Kumaresan V, Christopher S, et al. Experimental studies on solidification and subcooling characteristics of water-based phase change material (PCM) in a spherical encapsulation for cool thermal energy storage applications[J]. International Journal of Refrigeration, 2019, 100: 454-462. |
38 | Zhong Y J, Zhao B C, Lin J, et al. Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer[J]. Renewable Energy, 2019, 133: 240-247. |
39 | Atmakidis T, Kenig E Y. Numerical analysis of mass transfer in packed-bed reactors with irregular particle arrangements[J]. Chemical Engineering Science, 2012, 81: 77-83. |
40 | Chen L S, Lee W, Lee J. Analysis of the thermal field and heat transfer characteristics of pebble beds packed in a face-centered cubic structure[J]. Applied Thermal Engineering, 2017, 121: 473-483. |
41 | Lamberg P. Approximate analytical model for two-phase solidification problem in a finned phase-change material storage[J]. Applied Energy, 2004, 77(2): 131-152. |
42 | Kenisarin M, Mahkamov K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965. |
43 | Duan Z Y, Zhang Z, Wang J T, et al. Thermal performance of structured packed bed with encapsulated phase change materials[J]. International Journal of Heat and Mass Transfer, 2020, 158: 120066. |
44 | 梁书恩. 纳米胶囊化相变材料的制备及应用研究[D]. 合肥: 中国科学技术大学, 2016. |
Liang S E. Study on preparation and application of nano-encapsulated phase change materials[D]. Hefei: University of Science and Technology of China, 2016. | |
45 | Nallusamy N, Sampath S, Velraj R. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources[J]. Renewable Energy, 2007, 32(7): 1206-1227. |
46 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 259-260. |
Yang S M, Tao W Q. Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 259-260. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[13] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||