1 |
杨岸明. 城市污水处理厂曝气节能方法与技术[D]. 北京: 北京工业大学, 2012.
|
|
Yang A M. Energy conservation methodand technology of aerationin municipal wastewater treatment plant[D] Beijing: Beijing University of Technology. 2012
|
2 |
吴胜军, 方为茂, 赵红卫, 等. 高速剪切流剪切形成微气泡的研究[J]. 水处理技术, 2009, 35(5): 44-48.
|
|
Wu S J, Fang W M, Zhao H W, et al. Research on microbubbles formation by high-speed cross-flow[J]. Technology of Water Treatment, 2009, 35(5): 44-48.
|
3 |
朱五星, 舒锦琼. 城市污水处理厂能量优化策略研究[J]. 给水排水, 2005, 31(12): 31-33.
|
|
Zhu W X, Shu J Q. Study on energy optimization strategy of municipal wastewater treatment plant[J]. Water & Wastewater Engineering, 2005, 31(12): 31-33.
|
4 |
羊寿生. 城市污水厂的能源消耗[J]. 建筑技术通讯(给水排水), 1984(6): 15-19.
|
|
Yang S S. Energy consumption of urban sewage treatment plants[J]. Building Technology Communication (Water Supply and Drainage), 1984(6): 15-19.
|
5 |
Sørensen J, Andersen J, Andreasen K, et al. Experience with the upgrading of 14 treatment plants to N & P removal in the municipality of Aarhus[J]. Water Science and Technology, 1998, 37(9): 201-208.
|
6 |
Rice R G, Tupperainen J M I, Hedge R M. Dispersion and hold‐up in bubble columns—comparison of rigid and flexible spargers[J]. The Canadian Journal of Chemical Engineering, 1981, 59(6): 677-687.
|
7 |
He Y, Zhang T, Lv L, et al. Application of microbubbles in chemistry, wastewater treatment, medicine, cosmetics, and agriculture: a review[J]. Environmental Chemistry Letters, 2023, 21(6): 3245-3271.
|
8 |
王夙, 刘峻. 污水处理厂能耗分析与节能技术研究进展[J]. 四川有色金属, 2011,(3): 59-64.
|
|
Wang S, Liu J. Study on energyanalysis and saving in wastewater treatment plant[J]. Sichuan Nonferrous Metals, 2011, (3): 59-64.
|
9 |
刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010, 4(3): 585-589.
|
|
Liu C, Zhang L, Yang J L, et al. Characteristics of oxygen transfer in microbubble aeration[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 585-589.
|
10 |
Li M B, Hu L. Experimental investigation of the behaviors of highly deformed bubbles produced by coaxial coalescence[J]. Experimental Thermal and Fluid Science, 2020, 117: 110114.
|
11 |
Sattari A, Hanafizadeh P. Bubble formation on submerged micrometer-sized nozzles in polymer solutions: an experimental investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564: 10-22.
|
12 |
Zhang Z Z, Li L X, Xie W, et al. Experimental study of bubble formation process on the micro-orifice in mini channels[J]. Experimental Thermal and Fluid Science, 2020, 117: 110144.
|
13 |
Chakraborty I, Biswas G, Polepalle S, et al. Bubble formation and dynamics in a quiescent high‐density liquid[J]. AIChE Journal, 2015, 61(11): 3996-4012.
|
14 |
Kulkarni A A, Joshi J B. Bubble formation and bubble rise velocity in gas-liquid systems: a review[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873-5931.
|
15 |
Shen Y N, Hu L, Chen W Y, et al. Periodic and aperiodic bubbling in submerged gas-liquid jets through a micro-channel[J]. Physics of Fluids, 2017, 29(4): 047104.
|
16 |
Zimmerman W B, Tesar V, Butler S, et al. Microbubble generation[J]. Recent Patents on Engineering, 2008, 2(1): 1-8.
|
17 |
Brittle S, Desai P, Ng W C, et al. Minimising microbubble size through oscillation frequency control[J]. Chemical Engineering Research and Design, 2015, 104: 357-366.
|
18 |
Yang Z B, Cheng J, Lin R C, et al. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field[J]. Bioresource Technology, 2016, 211: 429-434.
|
19 |
Song A J, Ji Y M, Li C, et al. Modeling and validation of the momentum force for bubble formation from submerged orifices with an oscillatory air supply[J]. Chemical Engineering Science, 2021, 233: 116387.
|
20 |
Song A J, Zhao S J, Li C, et al. A quantitative study on the decreased diameter of bubbles generated from a submerged orifice with an oscillatory air supply[J]. Industrial & Engineering Chemistry Research, 2022, 61(8): 3113-3122.
|
21 |
Kupferberg A. Bubble formation at a submerged orifice above a gas chamber of finite volume[J]. Trans. Inst. Chem. Eng., 1969, 47: T241-T250.
|
22 |
Gharat S D, Joshi J B. Transport phenomena in bubble column reactors (Ⅰ): Flow pattern[J]. The Chemical Engineering Journal, 1992, 48(3): 141-151.
|
23 |
Nesset J E, Finch J A, Gomez C O. Operating variables affecting the bubble size in forced-air mechanical flotation machines[C]//Proceedings of the Australasian Institute of Mining and Metallurgy Publication Series. Fremantle, Australia, 2007: 55-65.
|
24 |
Tan Y H, Finch J A. Frother structure-property relationship: aliphatic alcohols and bubble rise velocity[J]. Minerals Engineering, 2016, 96: 33-38.
|
25 |
Tan Y H, Rafiei A A, Elmahdy A, et al. Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers[J]. International Journal of Mineral Processing, 2013, 119: 1-5.
|
26 |
Vaishnavi G N V, Ramarajan J, Jayavel S. Numerical studies of bubble formation dynamics in gas-liquid interaction using volume of fluid (VOF) method[J]. Thermal Science and Engineering Progress, 2023, 39: 101718.
|
27 |
Shirota M, Sanada T, Sato A, et al. Formation of a submillimeter bubble from an orifice using pulsed acoustic pressure waves in gas phase[J]. Physics of Fluids, 2008, 20(4): 3301.
|
28 |
Tesař V. Mechanisms of fluidic microbubble generation (Part Ⅱ): Suppressing the conjunctions[J]. Chemical Engineering Science, 2014, 116: 849-856.
|
29 |
Li C, Dong L S, Wang L G. Improvement of flotation recovery using oscillatory air supply[J]. Minerals Engineering, 2019, 131: 321-324.
|
30 |
Loubière K, Hébrard G, Guiraud P. Dynamics of bubble growth and detachment from rigid and flexible orifices[J]. The Canadian Journal of Chemical Engineering, 2003, 81(3/4): 499-507.
|
31 |
Baker C T, de Nevers N. Bubble formation at vibrated orifices: medium‐chamber‐volume region[J]. AIChE Journal, 1984, 30(1): 37-44.
|