化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4501-4512.DOI: 10.11949/0438-1157.20240604
王宾1,2,3,4(), 陈娟雯2,3,4(), 黄文博2,3,4, 党鹏飞1, 蒋方明2,3,4()
收稿日期:
2024-06-03
修回日期:
2024-08-08
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
陈娟雯,蒋方明
作者简介:
王宾(1998—),男,硕士,a626954940@163.com
基金资助:
Bin WANG1,2,3,4(), Juanwen CHEN2,3,4(), Wenbo HUANG2,3,4, Pengfei DANG1, Fangming JIANG2,3,4()
Received:
2024-06-03
Revised:
2024-08-08
Online:
2024-12-25
Published:
2025-01-03
Contact:
Juanwen CHEN, Fangming JIANG
摘要:
超长重力热管作为一种新型单井换热技术,在地热资源的开发利用上具有广阔的应用前景。热管的快速启动是高效稳定运行的基础,然而,目前对超长重力热管启动特性的研究仍处于起步阶段。利用长40 m、内直径为7 mm、长径比为5714的水工质超长重力热管可视化实验平台,研究了超长重力热管的启动过程,并分析其影响因素。结果表明,热管的启动形式随加热功率和注液高度的变化,主要分为温度渐变型、平稳过渡型以及温度突变型。随着加热功率从100 W增大到500 W,管内气液相变速率提高,启动温度从约43.5℃升高至81.4℃,热管启动时间总体减少约51%;当功率从200 W增至300 W时,管内开始出现明显的间歇沸腾现象,气液逆流阻力增大,热管启动时间不减反增;加热功率继续增大后,启动时间减少。在固定加热功率条件(300 W)下,随着注液高度从6 m增大到15 m,热管启动时间从6455 s先减少到3354 s后增加到4575 s,且当注液高度为9 m时,热管启动时间最短(3354 s)。当注液高度为3 m,加热功率增大至300 W时,出现大量冷凝液被卷携至绝热段上方和冷凝段的现象,导致蒸发段局部干涸,热管难以稳定运行,最终启动失败。实验进一步发现,在相同的加热功率和注液高度条件下,缩短热管蒸发段长度可有效减少启动时间(减少约56%),提高启动温度,使蒸发段温度变化更加平稳。
中图分类号:
王宾, 陈娟雯, 黄文博, 党鹏飞, 蒋方明. 超长重力热管启动特性[J]. 化工学报, 2024, 75(12): 4501-4512.
Bin WANG, Juanwen CHEN, Wenbo HUANG, Pengfei DANG, Fangming JIANG. Start-up characteristics of super-long gravity heat pipe[J]. CIESC Journal, 2024, 75(12): 4501-4512.
实验参数 | 实验范围 |
---|---|
工质 | 去离子水 |
蒸发段长度Le/m | 8~20 |
绝热段长度La/m | 15~27 |
冷凝段长度Lc/m | 5 |
加热功率Qin/W | 100~500 |
注液高度FH/m | 3~15 |
注液率FR/% | 15~75 |
冷却水流量vc/(g·s-1) | 3 |
冷却水入口温度Tin/℃ | 20 |
表1 实验工况
Table 1 Experimental operating condition
实验参数 | 实验范围 |
---|---|
工质 | 去离子水 |
蒸发段长度Le/m | 8~20 |
绝热段长度La/m | 15~27 |
冷凝段长度Lc/m | 5 |
加热功率Qin/W | 100~500 |
注液高度FH/m | 3~15 |
注液率FR/% | 15~75 |
冷却水流量vc/(g·s-1) | 3 |
冷却水入口温度Tin/℃ | 20 |
图4 超长重力热管启动过程中蒸发段的温度变化(FH=6 m,Qin =300 W,Le=20 m)
Fig.4 Temperature changes in the evaporation section during the start-up of the super-long gravity heat pipe (FH=6 m, Qin =300 W, Le=20 m)
图5 超长重力热管启动过程中的两相流现象(FH=6 m,Qin =300 W,Le=20 m)
Fig.5 The two-phase flow phenomena during the start-up of the super-long gravity heat pipe (FH=6 m, Qin =300 W, Le=20 m)
图7 不同加热功率和注液高度对超长重力热管启动性能的影响(Le=20 m)
Fig.7 Effect of different heating powers and fill heights on the start-up performance of super-long gravity heat pipe (Le=20 m)
图8 超长重力热管启动过程中T3~T8的温度变化(FH=3 m,Qin =300 W,Le=20 m)
Fig.8 Temperature changes of T3—T8 during the start-up of the super-long gravity heat pipe (FH=3 m, Qin =300 W, Le=20 m)
图9 超长重力热管启动过程中可视化窗口Ⅲ的两相流现象(FH=6 m,Qin =300 W,Le=20 m)
Fig.9 Visualisation of two-phase flow phenomenon during the start-up of super-long gravity heat pipe (FH=3 m, Qin =300 W, Le=20 m)
图10 超长重力热管启动过程中T9~T12的温度变化(FH=6 m,Qin =500 W,Le=20 m)
Fig.10 Temperature changes of T9—T12 during the start-up of the super-long gravity heat pipe(FH=6 m, Qin =500 W, Le=20 m)
图11 不同注液高度下蒸发段长度对超长重力热管启动时间和启动温度的影响(Qin =300 W)
Fig.11 Effect of evaporation section length on start-up time and start-up temperature of the super-long gravity heat pipe under different fill heights (Qin =300 W)
图12 超长重力热管启动过程中蒸发段平均温度的变化(Qin=300 W)
Fig.12 Variation of the average temperature of the evaporator section during the start-up of super-long gravity heat pipe(Qin=300 W)
1 | Zhu J L, Hu K Y, Lu X L, et al. A review of geothermal energy resources, development, and applications in China: current status and prospects[J]. Energy, 2015, 93: 466-483. |
2 | Moya D, Aldás C, Kaparaju P. Geothermal energy: power plant technology and direct heat applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 889-901. |
3 | Anand R S, Li A, Huang W B, et al. Super-long gravity heat pipe for geothermal energy exploitation—a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2024, 193: 114286. |
4 | Tomasini-Montenegro C, Santoyo-Castelazo E, Gujba H, et al. Life cycle assessment of geothermal power generation technologies: an updated review[J]. Applied Thermal Engineering, 2017, 114: 1119-1136. |
5 | Gao T Y, Long X T, Xie H P, et al. A review of advances and applications of geothermal energy extraction using a gravity-assisted heat pipe[J]. Geothermics, 2024, 116: 102856. |
6 | Kusaba S, Suzuki H, Hirowatari K, et al. Extraction of geothermal energy and electric power generation using a large scale heat pipe[C]//Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2000: 3489-3494. |
7 | Huang W B, Cao W J, Jiang F M. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162: 630-644. |
8 | Huang W B, Cen J W, Chen J W, et al. Heat extraction from hot dry rock by super-long gravity heat pipe: a field test[J]. Energy, 2022, 247: 123492. |
9 | Liu H, Wang X Y, Zheng L Y, et al. Temperature response and thermal performance analysis of a super-long flexible thermosyphon for shallow geothermal utilization: field test and numerical simulation[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122915. |
10 | Wang X Y, Yao H C, Li J, et al. Experimental and numerical investigation on heat transfer characteristics of ammonia thermosyhpons at shallow geothermal temperature[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1147-1159. |
11 | Abreu S L, Colle S. An experimental study of two-phase closed thermosyphons for compact solar domestic hot-water systems[J]. Solar Energy, 2004, 76(1/2/3): 141-145. |
12 | Moon S H, Park Y W, Yang H M. A single unit cooling fins aluminum flat heat pipe for 100W socket type COB LED lamp[J]. Applied Thermal Engineering, 2017, 126: 1164-1169. |
13 | Tian E, He Y L, Tao W Q. Research on a new type waste heat recovery gravity heat pipe exchanger[J]. Applied Energy, 2017, 188: 586-594. |
14 | Wang Y B, Wang B, Zhu K, et al. Energy saving potential of using heat pipes for CPU cooling[J]. Applied Thermal Engineering, 2018, 143: 630-638. |
15 | Zeghari K, Louahlia H, Le Masson S. Experimental investigation of flat porous heat pipe for cooling TV box electronic chips[J]. Applied Thermal Engineering, 2019, 163: 114267. |
16 | 杨永平, 魏庆朝, 周顺华, 等. 热管技术及其在多年冻土工程中的应用研究[J]. 岩土工程学报, 2005, 27(6): 698-706. |
Yang Y P, Wei Q C, Zhou S H, et al. Thermosyphon technology and its application in permafrost[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 698-706. | |
17 | 张军, 张辉, 张红, 等. 地热热管融雪系统应用研究[J]. 太阳能学报, 2011, 32(12): 1822-1826. |
Zhang J, Zhang H, Zhang H, et al. Application study of geothermic heat pipe snow melting system[J]. Acta Energiae Solaris Sinica, 2011, 32(12): 1822-1826. | |
18 | Wang X Y, Zhu Y L, Zhu M Z, et al. Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes[J]. Applied Thermal Engineering, 2017, 112: 1353-1363. |
19 | 蒋方明, 黄文博, 曹文炅. 干热岩热能的热管开采方案及其技术可行性研究[J]. 新能源进展, 2017, 5(6): 426-434. |
Jiang F M, Huang W B, Cao W J. Mining hot dry rock geothermal energy by heat pipe: conceptual design and technical feasibility study[J]. Advances in New and Renewable Energy, 2017, 5(6): 426-434. | |
20 | Cao W J, Huang W B, Jiang F M. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International Journal of Heat and Mass Transfer, 2016, 92: 1205-1217. |
21 | Seo J, Bang I C, Lee J Y. Length effect on entrainment limit of large-L/D vertical heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 97: 751-759. |
22 | 李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
Li T L, Cen J W, Huang W B, et al. Experimental study on heat transfer performance of super long gravity heat pipe[J]. CIESC Journal, 2020, 71(3): 997-1008. | |
23 | Wang X Y, Liu H, Wang Y F, et al. CFD simulation of dynamic heat transfer behaviors in super-long thermosyphons for shallow geothermal application[J]. Applied Thermal Engineering, 2020, 174: 115295. |
24 | Chen J W, Cen J W, Huang W B, et al. Multiphase flow and heat transfer characteristics of an extra-long gravity-assisted heat pipe: an experimental study[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120564. |
25 | Li F, Chen J W, Cen J W, et al. Two-phase flow visualization and heat transfer characteristics analysis in ultra-long gravity heat pipe[J]. Energies, 2023, 16(12): 4709. |
26 | Lin T, Quan X J, Cheng P. Experimental investigation of superlong two-phase closed thermosyphons for geothermal utilization[J]. International Journal of Thermal Sciences, 2022, 171: 107199. |
27 | Gou X, Li G Y, Zhang R C, et al. Critical and optimal inclination angles of two-phase closed thermosyphon under different operating conditions[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121540. |
28 | Yao H C, Li G, Wang Y F, et al. Visualized experiments on phase-change heat transfer of a metal “endoscopic” two-phase closed thermosyphon[J]. Experimental Thermal and Fluid Science, 2021, 124: 110365. |
29 | Xu Q, Yang G, Wang C Y, et al. Experimental study on the reinforcement of a gravity heat pipe based on a latent thermal functionally fluid[J]. Energy, 2023, 278: 127782. |
30 | Li G, Zhang Y C, Zhang G H, et al. Transient experimental and numerical study of thermosyphon under different heating fluxes and filling ratios[J]. Applied Thermal Engineering, 2024, 243: 122514. |
31 | Xing M B, Wang R X, Yu J L. The impact of gravity on the performance of pulsating heat pipe using surfactant solution[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119466. |
32 | Zhou Y, Yang H H, Liu L W, et al. Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid[J]. Powder Technology, 2021, 384: 414-422. |
[1] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[2] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[3] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
[4] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[5] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[6] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[7] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[8] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[9] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[10] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[11] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[12] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[13] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[14] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[15] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 327
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 123
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||