[1] |
Xu Z W, Yu X Q, Feng X J, Bao M. Propargylamine synthesis by copper-catalyzed oxidative coupling of alkynes and tertiary amine N-oxides [J]. J. Org. Chem., 2011, 76 (16): 6901-6905
|
[2] |
Farwick A, Helmchem G. Enantioselective total synthesis of (-)-α-kainic acid [J]. Org. Lett., 2010, 12 (5): 1108-1111
|
[3] |
Giles R L, Nkansah R A, Looper R E. Synthesis of 2-thio-and 2-oxoimidazoles via cascade addition-cycloisomerization reactions of propargylcyanamides [J]. J. Org. Chem., 2010, 75 (1): 261-264
|
[4] |
Wei C M, Li Z G, Li C J. The development of A (3)-coupling (aldehyde-alkyne-amine) and AA (3)-coupling (asymmetric aldehyde-alkyne-amine) [J]. Synlett, 2004, 35 (9): 1472-1483
|
[5] |
Xiao F P, Chen Y L, Liu Y, Wang J B. Sequential catalytic process: synthesis of quinoline derivatives by AuCl (3)/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes [J]. Tetrahedron, 2008, 64 (12): 2755-2761
|
[6] |
Shi L, Tu Y Q, Wang M, Zhang F M, Fan C A. Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C H activation catalyzed by copper in water [J]. Org. Lett., 2004, 6 (6): 1001-1003
|
[7] |
Sreedhar B, Reddy P S, Prakash B V, Ravindra A. Ultrasound-assisted rapid and efficient synthesis of propargylamines [J]. Tetrahedron Lett., 2005, 46: 7019-7022
|
[8] |
Kidwai M, Bansal V, Kumar A, Mozumdar S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine [J]. Green Chem., 2007, 9: 742-745
|
[9] |
Zhang X, Corma A. Supported gold (Ⅲ) catalysts for highly efficient three-component coupling reactions [J]. Angew. Chem. Int. Ed., 2008, 47 (23): 4358-4361
|
[10] |
Fischer R A. Metal-organic frameworks—the new jack of all trades for (inorganic) chemists [J]. Angew. Chem. Int. Ed., 2014, 53 (23): 5716-5717
|
[11] |
Zhang Z X, Ding N N, Zhang W H, Chen J X, Young D J, Hor T S A. Stitching 2D polymeric layers into flexible interpenetrated metal-organic frameworks within single crystals [J]. Angew. Chem. Int. Ed., 2014, 53 (18): 4628-4632
|
[12] |
Choi S B, Furukawa H, Nam H J, Jung D Y, Jhon Y H, Walton A, Book D, O'Keeffe M, Yaghi O M, Kim J. Reversible interpenetration in a metal-organic framework triggered by ligand removal and addition [J]. Angew. Chem., 2012, 51 (35): 8791-8795
|
[13] |
Gao Y, Wu X J, Zeng X C. Designs of fullerene-based frameworks for hydrogen storage [J]. J. Mater. Chem. A, 2014, 2: 5910-5914
|
[14] |
Müller M, Turner S, Lebedev O I, Fischer R A. Au@MOF-5 and Au/MOx@MOF-5 (M=Zn, Ti; x=1, 2): preparation and microstructural characterisation [J]. Eur. J. Inorg. Chem., 2011, 12: 1876-1887
|
[15] |
Wang X L, Cao J J, Liu G C, Tian A X, Li N, Luan J. A multifunctional reduced molybdophosphate-based 3D metal-organic framework induced by a rigid triazole and a flexible bis (triazole) mixed ligand [J]. Inorg. Chem. Commun., 2014, 47: 108-111
|
[16] |
Gole B, Bar A K, Mukherjee P S. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency [J]. Chem. Eur. J., 2014, 20: 2276-2291
|
[17] |
Ma Y H, Lin J, Xue Y M, Li J, Huang Y, Tang C C. Acid-assisted hydrothermal synthesis and adsorption properties of high-specific-surface metal-organic frameworks [J]. Mater. Lett., 2014, 132: 90-93
|
[18] |
Mu Cuizhi (穆翠枝), Xu Feng (徐峰), Lei Wei (雷威). Application of functional metal oganic framework materials [J]. Progr. Chem. (化学进展), 2007, 19 (9): 1345-1356
|
[19] |
Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J. Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis [J]. Chem. Eur. J., 2008, 14: 8204-8212
|
[20] |
Wu H, Simmons J M, Liu Y, Brown C M, Wang X S, Ma S Q, Peterson V K, Southon P D, Kepert C J, Zhou H T, Yildirim T, Zhou W. Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? [J]. Chem. Eur. J., 2010, 16: 5205-5214
|
[21] |
Wang Keke (王可可), Li Liangsha (李亮莎), Huang Hongliang (黄宏亮), Yang Qingyuan (阳庆元), Zhang Yi (张轶), Wang Shaohua (王少华), Wu Pingyi (吴平易), Lan Ling (兰玲), Liu Dahuan (刘大欢), Zhong Chongli (仲崇立). Control of pore size in Hf-based metal-organic frameworks and exploration of their adsorption properties [J]. CIESC Journal (化工学报), 2014, 65 (5):1696-1705
|
[22] |
Duan C J, Jie X M, Liu D D, Cao Y M, Yuan Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks [J]. J. Membr. Sci., 2014, 466: 92-102
|
[23] |
Zhang Suoying (张所瀛), Liu Hong (刘红), Liu Pengfei (刘朋飞), Wu Peipei (吴培培), Yang Zhuhong (杨祝红), Yang Qingyuan (阳庆元), Lu Xiaohua (陆小华). Progress of adsorption-based CO2/CH4 separation by metal organic frameworks [J].CIESC Journal (化工学报), 2014, 65 (5):1563-1570
|
[24] |
Hang T, Fu D W, Ye Q, Ye H Y, Xiong R G, Huang S D. Tanklike metal-organic framework filled with perchloric acid and its dielectric-ferroelectric properties [J]. Cryst. Growth Des., 2009, 9 (5): 2054-2056
|
[25] |
Vyasamudri S Y, Maji T K. Six fold interpenetrated diamondoid network of Cu(Ⅰ): synthesis, structure, selective anion exchange and luminescence properties [J]. Chem. Phys. Lett., 2009, 473: 312-316
|
[26] |
Cohen S M. New approaches for medicinal applications of bioinorganic chemistry [J]. Curr. Opin. Chem. Biol., 2007, 11 (2): 115-120
|
[27] |
Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Férey G. Metal-organic frameworks as efficient materials for drug delivery [J]. Angew. Chem. Int. Ed., 2006, 45 (36): 5974-5978
|
[28] |
Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Reqí M, Sebban M, Taulelle F, Férey G. Flexible porous metal-organic frameworks for a controlled drug delivery [J]. J. Am. Chem. Soc., 2008, 130 (21): 6774-6780
|
[29] |
Xamena F X L I, Corma A, Garcia H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors [J]. J. Phys. Chem. C, 2007, 111 (1): 80-85
|
[30] |
Zhang W J, Jiang P P, Wang Y, Zhang J, Zheng J W, Zhang P B. Selective oxidation over a metalloporphyrinic metal-organic framework catalyst and insights into the mechanism of bicarbonate ion as co-catalyst [J]. Chem. Eng. J., 2014, 257: 28-35
|
[31] |
Horike S, Dincă M, Tamaki K, Long G R. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites [J]. J. Am. Chem. Soc., 2008, 130 (18): 5854-5855
|
[32] |
Ying Yunpan (应允攀), Zeng Fanping (曾凡平), Wu Pingyi (吴平易), Yang Qingyuan (阳庆元), Liu Dahuan (刘大欢), Lan Ling (兰玲), Wang Shaohua (王少华), Zhang Yi (张轶), Zhong Chongli (仲崇立). Solvent effect on catalytic properties of microstructures in metal-organic frameworks [J]. CIESC Journal (化工学报), 2014, 65 (5):1652-1659
|
[33] |
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295: 469-472
|
[34] |
Li H, Eddaoudi M, Keeffe M O, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402: 276-279
|
[35] |
Gao S X, Zhao N, Shu M H, Che S N. Palladium nanoparticles supported on MOF-5: a highly active catalyst for a ligand-and copper-free Sonogashira coupling reaction [J]. Applied Catalysis A: General, 2010, 388: 196-201
|
[36] |
Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst [J]. Catal. Commun., 2008, 9: 1286-1290
|
[37] |
Phan N T S, Le K K A, Phan T D. MOF-5 as an efficient heterogeneous catalyst for Friedel-Crafts alkylation reactions [J]. Appl. Catal. A , 2010, 382: 246-253
|
[38] |
Liu Lili (刘丽丽), Zhang Xin (张鑫), Gao Jinsen (高金森), Xu Chunming (徐春明). Preparation and characterization of metal-organic framework supported gold catalysts and their catalytic performance for three-component coupling reaction [J]. Chin. J. Catal. (催化学报), 2012, 33 (5): 833-841
|
[39] |
Liu L L, Zhang X, Gao J S, Xu C M. Engineering metal-organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines [J]. Green Chem., 2012, 14: 1710-1720
|
[40] |
Kaye S S, Dailly A, Yaghi O M, Long J R. Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3 (MOF-5) [J]. J. Am. Chem. Soc., 2007, 129 (46): 14176-14177
|
[41] |
Hafizovic J, Bjørgen M, Olsbye U, Dietzel P D C, Bordiga S, Prestipino C, Lamberti C, Lillerud K P. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities [J]. J. Am. Chem. Soc., 2007, 129 (12): 3612-3620
|
[42] |
Saha D, Wei Z J, Deng S G. Hydrogen adsorption equilibrium and kinetics in metal-organic framework (MOF-5) synthesized with DEF approach [J]. Separation and Purification Technology, 2009, 64: 280-287
|
[43] |
Li Q L, Zhang Y H, Chen G X, Fan J Q, Lan H Q, Yang Y Q. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: effect of preparation conditions on surface composition and activity [J]. J. Catal., 2010, 273 (2): 167-176
|
[44] |
Stuckert N R, Wang L F, Yang R T. Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework [J]. Langmuir, 2010, 26 (14):11963-11971
|
[45] |
Nguyen J G, Cohen S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification [J]. J. Am. Chem. Soc., 2010, 132 (13): 4560-4561
|
[46] |
Datta K K R, Reddy B V S, Ariga K, Vinu A. Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction [J]. Angew. Chem. Int. Ed., 2010, 49 (34): 5961-5965
|
[47] |
Layek K, Chakravarti R, Kantam M L, Maheswaran H, Vinu A. Nanocrystalline magnesium oxide stabilized gold nanoparticles: an advanced nanotechnology based recyclable heterogeneous catalyst platform for the one-pot synthesis of propargylamines [J]. Green Chem., 2011, 13: 2878-2887
|
[48] |
Wei C M, Li C J. A highly efficient three-component coupling of aldehyde, alkyne, and amines via C-H activation catalyzed by gold in water [J]. J. Am. Chem. Soc., 2003, 125 (32): 9584-9585
|