[1] |
Ma F, Hanna M A. Biodiesel production: a review [J]. Bioresour. Technol., 1999, 70: 1-15.
|
[2] |
Kouzu M, Tsunomori M, Yamanaka S, Hidaka J. Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel [J]. Adv. Powder Technol., 2010, 21: 488-494.
|
[3] |
King F, Kelly G J. Combined solid base/hydrogenation catalysts for industrial condensation reaction [J]. Catal. Today, 2002, 73: 75-81.
|
[4] |
Kabashima H, Tsuji H, Hattori H. Michael addition of methyl crotonate over solid base catalysts [J]. Appl. Catal. A, 1997, 165: 319-325.
|
[5] |
Yuan Z L, Wu P, Gao J, Lu X Y, Hou Z Y. Pt/solid-base: a predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution [J]. Catal. Lett., 2009, 130: 261-265.
|
[6] |
Yuan Z L, Wang J H, Wang L N, Xie W H, Chen P, Hou Z Y. Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts [J]. Bioresour. Technol., 2010, 101: 7088-7092.
|
[7] |
Yuan Z L, Wang L N, Wang J H, Xia S H, Chen P, Hou Z Y. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts [J]. Appl. Catal. B, 2011, 101: 431-440.
|
[8] |
Xia S X, Yuan Z L, Wang L N, Chen P, Hou Z Y. Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors [J]. Appl. Catal. A, 2011, 403: 173-182.
|
[9] |
Xia S X, Du W C, Zheng L P, Chen P, Hou Z Y. A thermally stable and easily recycled core-shell Fe2O3@CuMgAl catalyst for hydrogenolysis of glycerol [J]. Catal. Sci. Technol., 2014, 4: 912-916.
|
[10] |
Xia S X, Zheng L P, Nie R F, Chen P, Lou H, Hou Z Y. Trivalent metal ions M3+ in M0.02Cu0.4Mg5.6Al1.98(OH)16CO3 layered double hydroxide as catalyst precursors for the hydrogenolysis of glycerol [J]. Chin. J. Catal., 2013, 34: 986-992.
|
[11] |
Xia S, Zheng L P, Wang L N, Chen P, Hou Z Y. Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu-Mg-Al catalysts [J]. RSC Adv., 2013, 3: 16569-16576.
|
[12] |
Ma L, He D H. Influence of catalyst pretreatment on catalytic properties and performances of Ru-Re/SiO2 in glycerol hydrogenolysis to propanediols [J]. Catal. Today, 2010, 149: 148-156.
|
[13] |
Zhu S H, Gao X Q, Zhu Y L, Zhu Y F, Xiang X M, Hu C X, Li Y W. Alkaline metals modified Pt-H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol [J]. Appl. Catal. B, 2013, 140/141: 60-67.
|
[14] |
Li Y M, Liu H M, Ma L, He D H. Glycerol hydrogenolysis to propanediols over supported Pd-Re catalysts [J]. RSC Adv., 2014, 4: 5503-5512.
|
[15] |
Niu L, Wei R P, Yang H, Li X, Jiang F, Xiao G M. Hydrogenolysis of glycerol to propanediols over Cu-MgO/USY catalyst [J]. Chin. J. Catal., 2013, 34: 2230-2235.
|
[16] |
Gao J, Liang D, Chen P, Hou Z Y, Zheng X M. Oxidation of glycerol with oxygen in a base-free aqueous solution over Pt/AC and Pt/MWNTs catalysts [J]. Catal. Lett., 2009, 130: 185-191.
|
[17] |
Liang D, Gao J, Wang J H, Chen P, Hou Z Y, Zheng X M. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts [J]. Catal. Commun., 2009, 10: 1586-1590.
|
[18] |
Liang D, Gao J, Sun H, Chen P, Hou Z Y, Zheng X M. Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts [J]. Appl. Catal. B, 2011, 106: 423-432.
|
[19] |
Nie R, Liang D, Shen L, Gao J, Chen P, Hou Z Y. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles [J]. Appl. Catal. B, 2012, 127: 212-220.
|
[20] |
Zhang M Y, Nie R F, Wang L N, Shi J J, Du W C, Hou Z Y. Selective oxidation of glycerol over carbon nanofibers supported Pt catalysts in a base-free aqueous solution [J]. Catal. Commun., 2015, 59: 5-9.
|
[21] |
Gandarias I, Arias P L, Requies J, EI Doukkali M, Güemez M B. Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source [J]. J. Catal., 2011, 282: 237-247.
|
[22] |
Zhu S H, Gao X Q, Zhu Y L, Fan W B, Wang J G, Li Y W. A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol [J]. Catal. Sci. Technol., 2015, 5: 1169-1180.
|
[23] |
Hu J Y, Liu X Y, Fan Y Q, Xie S H, Pei Y, Qiao M H, Fan K, Zhang X, Zong B. Physically mixed ZnO and skeletal NiMo for one-pot reforming-hydrogenolysis of glycerol to 1,2-propanediol [J]. Chin. J. Catal., 2013, 34: 1020-1026.
|
[24] |
Feng J, Fu H Y, Wang J B, Li R X, Chen H, Li X J. Hydrogenolysis of glycerol to glycols over ruthenium catalysts: effect of support and catalyst reduction temperature [J]. Catal. Commun., 2008, 9: 1458-1464.
|
[25] |
Maris E P, Davis R J. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts [J]. J. Catal., 2007, 249: 328-337.
|
[26] |
Lahr D G, Shanks B H. Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols [J]. J. Catal., 2005, 232: 386-394.
|
[27] |
Runeberg J, Baiker A, Kijenski J. Copper catalyzed amination of ethylene glycol [J]. Appl. Catal., 1985, 17: 309-319.
|
[28] |
Huang Z W, Cui F, Kang H X, Chen J, Zhang X Z, Xia C G. Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method: a simple but efficient and stable catalyst for glycerol hydrogenolysis [J]. Chem. Mater., 2008, 20: 5090-5099.
|
[29] |
Huang Z W, Cui F, Kang H X, Chen J, Xia C G. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: effect of residual sodium [J]. Appl. Catal. A, 2009, 366: 288-298.
|
[30] |
Wang S, Liu H C. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts [J]. Catal. Lett., 2007, 117: 62-67.
|
[31] |
Gandarias I, Arias P L, Requies J, Güemez M B, Fierro J L G. Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: the role of acid and metal sites on product selectivity and the reaction mechanism [J]. Appl. Catal. B, 2010, 97: 248-256.
|
[32] |
Wang S, Zhang Y C, Liu H C. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO composite catalysts: structural requirements and reaction mechanism [J]. Chem.-Asi. J., 2010, 5: 1100-1111.
|
[33] |
Anderson J A, Márquez-Alvarez C, López-Munõz M J, Rodríguez-Ramos I, Guerrero-Ruiz A. Reduction of NOx in C3H6/air mixtures over Cu/Al2O3 catalysts[J]. Appl. Catal. B, 1997, 14(3/4): 189-202.
|
[34] |
Carniti P, Gervasini A, Modica V H, Ravasio N. Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas [J]. Appl. Catal. B, 2000, 28: 175-185.
|
[35] |
Suh Y-W, Moon S-H, Rhee H-K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2 [J]. Catal. Today, 2000, 63: 447-452.
|