化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3601-3612.doi: 10.11949/0438-1157.20201874

• 催化、动力学与反应器 • 上一篇    下一篇

磺酸功能化离子液体的合成及催化制备生物柴油应用

蔡东仁1(),詹国武1(),肖静冉1,邱挺2()   

  1. 1.华侨大学化工学院,福建 厦门 361021
    2.福州大学石油化工学院,福建 福州 350108
  • 收稿日期:2020-12-20 修回日期:2021-03-28 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 詹国武,邱挺 E-mail:15506@hqu.edu.cn;gwzhan@hqu.edu.cn;tingqiu@fzu.edu.cn
  • 作者简介:蔡东仁(1990—),男,博士,讲师,15506@hqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21878054)

Synthesis of sulfonic acid functionalized ionic liquids for catalytic applications in biodiesel production

CAI Dongren1(),ZHAN Guowu1(),XIAO Jingran1,QIU Ting2()   

  1. 1.College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
    2.College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
  • Received:2020-12-20 Revised:2021-03-28 Published:2021-07-05 Online:2021-07-05
  • Contact: ZHAN Guowu,QIU Ting E-mail:15506@hqu.edu.cn;gwzhan@hqu.edu.cn;tingqiu@fzu.edu.cn

摘要:

基于4-甲基噻唑,采用两步法合成4种不同阴离子的磺酸功能化离子液体用于催化无患子油与甲醇酯交换反应制备生物柴油。傅里叶红外光谱、核磁共振和热重分析结果表明,离子液体被成功制备并且具备高热稳定性。其中,3-(3-磺酸基)丙基-4-甲基噻唑三氟甲烷磺酸盐([Ps-MTH][CF3SO3])在所制备的离子液体中表现出最高的催化活性。以[Ps-MTH][CF3SO3]为催化剂,无患子油与甲醇酯交换反应的最佳操作条件为反应温度128℃、醇油摩尔比28.10∶1、催化剂用量0.62 mmol/g(基于油的质量)、反应时间8 h,生物柴油收率高达92.78%±0.47%。此外,[Ps-MTH][CF3SO3]具备良好的重复使用性,在不同酯交换反应中也表现出良好的催化活性。该研究为离子液体催化无患子油制备生物柴油的工业化生产提供了基础数据。

关键词: 生物柴油, 4-甲基噻唑, 离子液体, 无患子油, 酯交换

Abstract:

Based on 4-methylthiazole, a two-step method was used to synthesize four sulfonic acid functionalized ionic liquids with different anions to catalyze the transesterification reaction of soapberry oil with methanol to produce biodiesel. The characterization results of Fourier transform infrared spectroscopy, nuclear magnetic resonance, and thermogravimetric analysis suggested that ionic liquids are successfully prepared with high thermal stability. Among the ionic liquids investigated, 3-(3-sulfonic) propyl-4-methylthiazole trifluoromethane sulfonate ([Ps-MTH][CF3SO3]) performs the highest catalytic activity. In particular, catalyzed by [Ps-MTH][CF3SO3], the optimum operating conditions of transesterification of soapberry oil and methanol are 128℃ (temperature), 28.10∶1 (molar ratio of alcohol to oil), 0.62 mmol/g (catalyst amount, based on the mass of oil) and 8 h (reaction time), leading to a high biodiesel yield of 92.78%±0.47%. Besides, [Ps-MTH][CF3SO3] also possesses good reusability and universality. This study will provide basic data for the industrial production of biodiesel from soapberry oil catalyzed by ionic liquids.

Key words: biodiesel, 4-methylthiazole, ionic liquids, soapberry oil, transesterification

中图分类号: 

  • TQ 018

图1

磺酸功能化离子液体合成示意图"

图2

微型磁力高压反应釜1—电加热套;2—磁转子;3—热电偶;4—压力表;5—取样口;6—充气口;7—氮气钢瓶"

图3

甘油与醋酸的酯化反应"

图4

4种磺酸功能化离子液体的FT-IR谱图"

图5

4种磺酸功能化离子液体的1H NMR谱图"

图6

4种磺酸功能化离子液体的13C NMR谱图"

表1

4种磺酸功能化离子液体1H NMR数据"

离子液体δ
[Ps-MTH][HSO4]9.81 (d, J = 2.7 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H), 4.56~4.53 (m, 2H), 2.93 (d, J = 7.2 Hz, 2H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H)
[Ps-MTH][Tos]9.79 (d, J = 2.7 Hz, 1H), 7.73 (d, J = 0.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 4.52 (d, J = 7.7 Hz, 2H), 2.92 (d, J = 7.2 Hz, 2H), 2.50 (d, J = 0.9 Hz, 3H), 2.30 (s, 3H), 2.29~2.26 (m, 2H)
[Ps-MTH][CH3SO3]9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.0 Hz, 1H), 4.56~4.53 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.71 (s, 3H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H)
[Ps-MTH][CF3SO3]9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 4.56~4.54 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.32~2.29 (m, 2H)

表2

4种磺酸功能化离子液体的13C NMR数据"

离子液体δ
[Ps-MTH][HSO4]157.13, 146.27, 120.64, 50.73, 46.65, 24.01, 11.98
[Ps-MTH][Tos]157.09, 146.24, 141.98, 138.95, 128.95, 124.87, 120.64, 50.71, 46.64, 24.01, 19.99, 11.97
[Ps-MTH][CH3SO3]157.13, 146.28, 120.64, 50.73, 46.65, 37.96, 24.01, 11.98
[Ps-MTH][CF3SO3]157.12, 146.28, 120.64, 118.11, 50.73, 46.65, 24.01, 11.98

图7

4种磺酸功能化离子液体的TGA"

表3

4种噻唑型离子液体的催化活性"

序号离子液体收率 / %
1[Ps-MIH][CF3SO3]83.85±0.39
2[Ps-MPH][CF3SO3]84.92±0.75
3[Ps-MTH][CF3SO3]87.28±0.83
4[Ps-MTH][HSO4]84.28±0.58
5[Ps-MTH][Tos]84.50±0.46
6[Ps-MTH][CH3SO3]81.62±0.29

图8

[Ps-MTH][CF3SO3]催化酯交换反应机理"

图9

单因素实验结果"

表4

响应面分析的因素及水平"

编码水平

X1

反应温度/℃

X2

醇油摩尔比

X3

催化剂用量/(mmol/g)

-1110150.34
0120230.54
1130310.74

表5

响应面分析的实验值和预测值"

序号工艺条件收率 / %
X1X2X3实验值预测值
100087.80±0.3687.23
200087.67±0.4787.23
31-1077.03±0.3377.12
411089.45±0.5888.95
5-10-169.02±0.6168.45
6-11079.16±0.5579.07
700087.02±0.5287.23
810-179.02±0.1978.86
9-1-1064.32±0.8364.82
1010184.60±0.3685.17
1100087.05±0.4987.23
12-10173.24±0.3573.40
130-1165.26±0.6864.60
1401-171.35±0.2572.01
1500086.63±0.7387.23
1601187.82±0.2887.76
170-1-169.04±0.4469.10

表6

BBD模型的方差及显著性"

来源方差和自由度均方F

P

Prob > F

模型1253.599139.29319.77< 0.0001
X1245.981245.98564.69< 0.0001
X2339.691339.69779.84< 0.0001
X363.23163.23145.15< 0.0001
X1X21.4611.463.360.1094
X1X30.4610.461.060.3371
X2X3102.521102.52235.35< 0.0001
X1246.43146.43106.59< 0.0001
X22173.721173.72398.81< 0.0001
X32233.271233.27535.53< 0.0001
残差3.0570.44
失拟项2.0930.702.920.1634
纯误差0.9540.24
离散系数R2校正R2预测R2方差精密度
0.660.99760.99450.972179.1548.097

表7

无患子生物柴油的理化性质"

性质数值ASTM D6751标准
密度(20℃)/(kg/m3)869.43
运动黏度(40℃)/(mm2/s)6.341.9~6.0
酸值/(mg/g)0.37≤0.50
含水量/(mg/kg)94≤500
闪点/℃170.5≥130
铜片腐蚀度1a≤3
十六烷值60.9≥47

图10

[Ps-MTH][CF3SO3]的重复使用性能"

图11

新鲜[Ps-MTH][CF3SO3]与回收[Ps-MTH][CF3SO3]的FT-IR谱图比较"

表8

[Ps-MTH][CF3SO3]在不同酯交换反应中的催化活性"

序号原料低碳醇催化剂收率 / %
1无患子油甲醇0
2无患子油甲醇H2SO491.26±0.34
3无患子油甲醇[Ps-MTH][CF3SO3]92.78±0.47
4无患子油乙醇[Ps-MTH][CF3SO3]83.17±0.28
5无患子油丙醇[Ps-MTH][CF3SO3]74.19±0.32
6煎炸废油甲醇[Ps-MTH][CF3SO3]76.77±0.61
7棕榈油甲醇[Ps-MTH][CF3SO3]84.59±0.54
8椰子油甲醇[Ps-MTH][CF3SO3]92.90±0.44
1 Qiu T, Guo X T, Yang J B, et al. The synthesis of biodiesel from coconut oil using novel Brønsted acidic ionic liquid as green catalyst[J]. Chemical Engineering Journal, 2016, 296: 71-78.
2 Feng Y Y, Li L, Wang X, et al. Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel[J]. Energy Conversion and Management, 2017, 153: 649-658.
3 Li L, Yi N, Wang X D, et al. Novel triazolium-based ionic liquids as effective catalysts for transesterification of palm oil to biodiesel[J]. Journal of Molecular Liquids, 2018, 249: 732-738.
4 Ali C H, Qureshi A S, Mbadinga S M, et al. Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: central composite design approach[J]. Renewable Energy, 2017, 109: 93-100.
5 Pan H, Liu X F, Zhang H, et al. Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion[J]. Renewable Energy, 2017, 107: 245-252.
6 Chang F, Zhou Q, Pan H, et al. Efficient production of biodiesel from Xanthium sibiricum Patr oil via supramolecular catalysis[J]. Renewable Energy, 2017, 111: 556-560.
7 Laesecke J, Ellis N, Production Kirchen P., analysis and combustion characterization of biomass fast pyrolysis oil - biodiesel blends for use in diesel engines[J]. Fuel, 2017, 199: 346-357.
8 Kafuku G, Mbarawa M. Biodiesel production from Croton megalocarpus oil and its process optimization[J]. Fuel, 2010, 89(9): 2556-2560.
9 Koh M Y, Mohd Ghazi T I. A review of biodiesel production from Jatropha curcas L. oil[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2240-2251.
10 Zhang H, Li H, Pan H, et al. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid[J]. Energy Conversion and Management, 2017, 138: 45-53.
11 Berchmans H J, Morishita K, Takarada T. Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas-waste food oil mixture for biodiesel production[J]. Fuel, 2013, 104: 46-52.
12 Elsheikh Y A. Preparation of Citrullus colocynthis biodiesel via dual-step catalyzed process using functionalized imidazolium and pyrazolium ionic liquids for esterification step[J]. Industrial Crops and Products, 2013, 49: 822-829.
13 Olkiewicz M, Plechkova N V, Earle M J, et al. Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids[J]. Applied Catalysis B: Environmental, 2016, 181: 738-746.
14 赵晓霞, 董振浩, 刘光斌, 等. 不同种源无患子品质差异及种籽油脂肪酸分析[J]. 江西农业大学学报, 2014, 36(3): 575-581.
Zhao X X, Dong Z H, Liu G B, et al. Difference analysis of seed qualities and composition of fatty acid of oil of sapindus mulorossi gaertn from different provenances[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(3): 575-581.
15 孙尚德, 崔龙龙, 宋范范, 等. 无患子油理化指标和甘三酯结构分析[J]. 中国油脂, 2011, 36(6): 64-67.
Sun S D, Cui L L, Song F F, et al. Analysis of the physicochemical characteristics and triacylglycerol composition of Sapindus mukorossi Gaetrh. seed oil[J]. China Oils and Fats, 2011, 36(6): 64-67.
16 刘光斌, 赵晓霞, 胡冬南, 等. 无患子油脂的提取、理化性质及其制备生物柴油的研究[J]. 中国粮油学报, 2013, 28(3): 59-64.
Liu G B, Zhao X X, Hu D N, et al. Study on extraction and physiochemical properties of sapindus mukorossi seed oil and preparation of biodiesel[J]. Journal of the Chinese Cereals and Oils Association, 2013, 28(3): 59-64.
17 Ni W, Hua Y, Liu H Y, et al. Tirucallane-type triterpenoid saponins from the roots of Sapindus mukorossi[J]. Chemical & Pharmaceutical Bulletin, 2006, 54(10): 1443-1446.
18 Huang H C, Wu M D, Tsai W J, et al. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi[J]. Phytochemistry, 2008, 69(7): 1609-1616.
19 Huang H C, Tsai W J, Liaw C C, et al. Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi[J]. Chemical & Pharmaceutical Bulletin, 2007, 55(9): 1412-1415.
20 Kuo Y H, Huang H C, Yang Kuo L M, et al. New dammarane-type saponins from the galls of sapindus mukorossi[J]. Journal of Agricultural and Food Chemistry, 2005, 53(12): 4722-4727.
21 Ullah Z, Bustam M A, Man Z. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst[J]. Renewable Energy, 2015, 77: 521-526.
22 Yahya S, Muhamad Wahab S K, Harun F W. Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology[J]. Renewable Energy, 2020, 157: 164-172.
23 Jamil U, Husain Khoja A, Liaquat R, et al. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: a process optimization study[J]. Energy Conversion and Management, 2020, 215: 112934.
24 Sulaiman N F, Hashim A N N, Toemen S, et al. Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification[J]. Renewable Energy, 2020, 153: 1-11.
25 Xie W L, Wang H. Synthesis of heterogenized polyoxometalate-based ionic liquids with Brönsted-Lewis acid sites: a magnetically recyclable catalyst for biodiesel production from low-quality oils[J]. Journal of Industrial and Engineering Chemistry, 2020, 87: 162-172.
26 Guo F, Fang Z, Tian X F, et al. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids[J]. Bioresource Technology, 2011, 102(11): 6469-6472.
27 Clark K D, Emaus M N, Varona M, et al. Ionic liquids: solvents and sorbents in sample preparation[J]. Journal of Separation Science, 2018, 41(1): 209-235.
28 Zhang Q Q, Cui X B, Feng T Y, et al. Hydrolysis of methyl acetate using ionic liquids as catalyst and solvent[J]. Molecular Catalysis, 2020, 484: 110785.
29 Ding H, Ye W, Wang Y Q, et al. Process intensification of transesterification for biodiesel production from palm oil: microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids[J]. Energy, 2018, 144: 957-967.
30 He Y F, Han X X, Chen Q, et al. Transesterification of soybean oil to biodiesel by Brønsted-type ionic liquid acid catalysts[J]. Chemical Engineering & Technology, 2013, 36(9): 1559-1567.
31 Fan P, Xing S Y, Wang J Y, et al. Sulfonated imidazolium ionic liquid-catalyzed transesterification for biodiesel synthesis[J]. Fuel, 2017, 188: 483-488.
32 Cai D R, Xie Y W, Li L, et al. Design and synthesis of novel Brønsted-Lewis acidic ionic liquid and its application in biodiesel production from soapberry oil[J]. Energy Conversion and Management, 2018, 166: 318-327.
33 Xue Z M, Qin L, Jiang J Y, et al. Thermal, electrochemical and radiolytic stabilities of ionic liquids[J]. Physical Chemistry Chemical Physics, 2018, 20(13): 8382-8402.
34 Wang B, Qin L, Mu T, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131.
[1] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[2] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[3] 张家仁, 刘海超. 大豆油与甲醇酯交换反应体系的相平衡研究[J]. 化工学报, 2022, 73(5): 1920-1929.
[4] 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939.
[5] 付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
[6] 李春晖, 何辉, 何明键, 张萌, 高杨, 矫彩山. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(4): 1606-1614.
[7] 姜焱龙, 张妮, 李淡然, 朱冰冰, 蒋怡晨, 陈海军, 朱跃钊. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713.
[8] 李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053.
[9] 许昊, 陈伟, 李邹路. 以[Li(TX-7)]SCN/H2O为工质对的第二类热泵特性研究[J]. 化工学报, 2022, 73(2): 577-586.
[10] 陈一宇, 朱春英, 付涛涛, 马友光. 三维菱形结构微通道内气液传质与强化[J]. 化工学报, 2022, 73(1): 175-183.
[11] 于筱溪, 闫真真, 蒋其辉, 吴霞, 张余晓, 王晓娟, 黄方. 溴化1-辛基-3-甲基咪唑聚集状态对蛋白质结晶的影响研究[J]. 化工学报, 2021, 72(9): 4854-4860.
[12] 宋振兴, 崔现宝, 张缨, 张雪梅, 何杰, 冯天扬, 王纪孝. 混合离子液体催化反应精馏合成乙酸正己酯[J]. 化工学报, 2021, 72(8): 4155-4165.
[13] 王宗旭,李紫欣,白璐,董海峰,张香平. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466-3477.
[14] 张莉莉, 李艳, 高静. 热可逆离子液体-低共熔溶剂双水相体系的相行为及理化特性研究[J]. 化工学报, 2021, 72(5): 2493-2505.
[15] 陈婷婷, 尹炯婷, 许映杰. 离子液体在纳米ZnO材料制备中的研究进展[J]. 化工学报, 2021, 72(5): 2436-2447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!