化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3601-3612.DOI: 10.11949/0438-1157.20201874
收稿日期:
2020-12-20
修回日期:
2021-03-28
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
詹国武,邱挺
作者简介:
蔡东仁(1990—),男,博士,讲师,基金资助:
CAI Dongren1(),ZHAN Guowu1(),XIAO Jingran1,QIU Ting2()
Received:
2020-12-20
Revised:
2021-03-28
Online:
2021-07-05
Published:
2021-07-05
Contact:
ZHAN Guowu,QIU Ting
摘要:
基于4-甲基噻唑,采用两步法合成4种不同阴离子的磺酸功能化离子液体用于催化无患子油与甲醇酯交换反应制备生物柴油。傅里叶红外光谱、核磁共振和热重分析结果表明,离子液体被成功制备并且具备高热稳定性。其中,3-(3-磺酸基)丙基-4-甲基噻唑三氟甲烷磺酸盐([Ps-MTH][CF3SO3])在所制备的离子液体中表现出最高的催化活性。以[Ps-MTH][CF3SO3]为催化剂,无患子油与甲醇酯交换反应的最佳操作条件为反应温度128℃、醇油摩尔比28.10∶1、催化剂用量0.62 mmol/g(基于油的质量)、反应时间8 h,生物柴油收率高达92.78%±0.47%。此外,[Ps-MTH][CF3SO3]具备良好的重复使用性,在不同酯交换反应中也表现出良好的催化活性。该研究为离子液体催化无患子油制备生物柴油的工业化生产提供了基础数据。
中图分类号:
蔡东仁, 詹国武, 肖静冉, 邱挺. 磺酸功能化离子液体的合成及催化制备生物柴油应用[J]. 化工学报, 2021, 72(7): 3601-3612.
CAI Dongren, ZHAN Guowu, XIAO Jingran, QIU Ting. Synthesis of sulfonic acid functionalized ionic liquids for catalytic applications in biodiesel production[J]. CIESC Journal, 2021, 72(7): 3601-3612.
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 9.81 (d, J = 2.7 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H), 4.56~4.53 (m, 2H), 2.93 (d, J = 7.2 Hz, 2H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][Tos] | 9.79 (d, J = 2.7 Hz, 1H), 7.73 (d, J = 0.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 4.52 (d, J = 7.7 Hz, 2H), 2.92 (d, J = 7.2 Hz, 2H), 2.50 (d, J = 0.9 Hz, 3H), 2.30 (s, 3H), 2.29~2.26 (m, 2H) |
[Ps-MTH][CH3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.0 Hz, 1H), 4.56~4.53 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.71 (s, 3H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][CF3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 4.56~4.54 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.32~2.29 (m, 2H) |
表1 4种磺酸功能化离子液体1H NMR数据
Table 1 The 1H NMR data of four sulfonic group functionalized ionic liquids
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 9.81 (d, J = 2.7 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H), 4.56~4.53 (m, 2H), 2.93 (d, J = 7.2 Hz, 2H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][Tos] | 9.79 (d, J = 2.7 Hz, 1H), 7.73 (d, J = 0.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 4.52 (d, J = 7.7 Hz, 2H), 2.92 (d, J = 7.2 Hz, 2H), 2.50 (d, J = 0.9 Hz, 3H), 2.30 (s, 3H), 2.29~2.26 (m, 2H) |
[Ps-MTH][CH3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.0 Hz, 1H), 4.56~4.53 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.71 (s, 3H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][CF3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 4.56~4.54 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.32~2.29 (m, 2H) |
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 157.13, 146.27, 120.64, 50.73, 46.65, 24.01, 11.98 |
[Ps-MTH][Tos] | 157.09, 146.24, 141.98, 138.95, 128.95, 124.87, 120.64, 50.71, 46.64, 24.01, 19.99, 11.97 |
[Ps-MTH][CH3SO3] | 157.13, 146.28, 120.64, 50.73, 46.65, 37.96, 24.01, 11.98 |
[Ps-MTH][CF3SO3] | 157.12, 146.28, 120.64, 118.11, 50.73, 46.65, 24.01, 11.98 |
表2 4种磺酸功能化离子液体的13C NMR数据
Table 2 The 13C NMR data of four sulfonic group functionalized ionic liquids
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 157.13, 146.27, 120.64, 50.73, 46.65, 24.01, 11.98 |
[Ps-MTH][Tos] | 157.09, 146.24, 141.98, 138.95, 128.95, 124.87, 120.64, 50.71, 46.64, 24.01, 19.99, 11.97 |
[Ps-MTH][CH3SO3] | 157.13, 146.28, 120.64, 50.73, 46.65, 37.96, 24.01, 11.98 |
[Ps-MTH][CF3SO3] | 157.12, 146.28, 120.64, 118.11, 50.73, 46.65, 24.01, 11.98 |
序号 | 离子液体 | 收率 / % |
---|---|---|
1 | [Ps-MIH][CF3SO3] | 83.85±0.39 |
2 | [Ps-MPH][CF3SO3] | 84.92±0.75 |
3 | [Ps-MTH][CF3SO3] | 87.28±0.83 |
4 | [Ps-MTH][HSO4] | 84.28±0.58 |
5 | [Ps-MTH][Tos] | 84.50±0.46 |
6 | [Ps-MTH][CH3SO3] | 81.62±0.29 |
表3 4种噻唑型离子液体的催化活性
Table 3 The catalytic activity of four sulfonic acid functionalized ionic liquids
序号 | 离子液体 | 收率 / % |
---|---|---|
1 | [Ps-MIH][CF3SO3] | 83.85±0.39 |
2 | [Ps-MPH][CF3SO3] | 84.92±0.75 |
3 | [Ps-MTH][CF3SO3] | 87.28±0.83 |
4 | [Ps-MTH][HSO4] | 84.28±0.58 |
5 | [Ps-MTH][Tos] | 84.50±0.46 |
6 | [Ps-MTH][CH3SO3] | 81.62±0.29 |
编码水平 | X1 反应温度/℃ | X2 醇油摩尔比 | X3 催化剂用量/(mmol/g) |
---|---|---|---|
-1 | 110 | 15 | 0.34 |
0 | 120 | 23 | 0.54 |
1 | 130 | 31 | 0.74 |
表4 响应面分析的因素及水平
Table 4 The factors and levels of response surface analysis
编码水平 | X1 反应温度/℃ | X2 醇油摩尔比 | X3 催化剂用量/(mmol/g) |
---|---|---|---|
-1 | 110 | 15 | 0.34 |
0 | 120 | 23 | 0.54 |
1 | 130 | 31 | 0.74 |
序号 | 工艺条件 | 收率 / % | |||
---|---|---|---|---|---|
X1 | X2 | X3 | 实验值 | 预测值 | |
1 | 0 | 0 | 0 | 87.80±0.36 | 87.23 |
2 | 0 | 0 | 0 | 87.67±0.47 | 87.23 |
3 | 1 | -1 | 0 | 77.03±0.33 | 77.12 |
4 | 1 | 1 | 0 | 89.45±0.58 | 88.95 |
5 | -1 | 0 | -1 | 69.02±0.61 | 68.45 |
6 | -1 | 1 | 0 | 79.16±0.55 | 79.07 |
7 | 0 | 0 | 0 | 87.02±0.52 | 87.23 |
8 | 1 | 0 | -1 | 79.02±0.19 | 78.86 |
9 | -1 | -1 | 0 | 64.32±0.83 | 64.82 |
10 | 1 | 0 | 1 | 84.60±0.36 | 85.17 |
11 | 0 | 0 | 0 | 87.05±0.49 | 87.23 |
12 | -1 | 0 | 1 | 73.24±0.35 | 73.40 |
13 | 0 | -1 | 1 | 65.26±0.68 | 64.60 |
14 | 0 | 1 | -1 | 71.35±0.25 | 72.01 |
15 | 0 | 0 | 0 | 86.63±0.73 | 87.23 |
16 | 0 | 1 | 1 | 87.82±0.28 | 87.76 |
17 | 0 | -1 | -1 | 69.04±0.44 | 69.10 |
表5 响应面分析的实验值和预测值
Table 5 The experimental values and predicted values of response surface analysis
序号 | 工艺条件 | 收率 / % | |||
---|---|---|---|---|---|
X1 | X2 | X3 | 实验值 | 预测值 | |
1 | 0 | 0 | 0 | 87.80±0.36 | 87.23 |
2 | 0 | 0 | 0 | 87.67±0.47 | 87.23 |
3 | 1 | -1 | 0 | 77.03±0.33 | 77.12 |
4 | 1 | 1 | 0 | 89.45±0.58 | 88.95 |
5 | -1 | 0 | -1 | 69.02±0.61 | 68.45 |
6 | -1 | 1 | 0 | 79.16±0.55 | 79.07 |
7 | 0 | 0 | 0 | 87.02±0.52 | 87.23 |
8 | 1 | 0 | -1 | 79.02±0.19 | 78.86 |
9 | -1 | -1 | 0 | 64.32±0.83 | 64.82 |
10 | 1 | 0 | 1 | 84.60±0.36 | 85.17 |
11 | 0 | 0 | 0 | 87.05±0.49 | 87.23 |
12 | -1 | 0 | 1 | 73.24±0.35 | 73.40 |
13 | 0 | -1 | 1 | 65.26±0.68 | 64.60 |
14 | 0 | 1 | -1 | 71.35±0.25 | 72.01 |
15 | 0 | 0 | 0 | 86.63±0.73 | 87.23 |
16 | 0 | 1 | 1 | 87.82±0.28 | 87.76 |
17 | 0 | -1 | -1 | 69.04±0.44 | 69.10 |
来源 | 方差和 | 自由度 | 均方 | F值 | P值 Prob > F |
---|---|---|---|---|---|
模型 | 1253.59 | 9 | 139.29 | 319.77 | < 0.0001 |
X1 | 245.98 | 1 | 245.98 | 564.69 | < 0.0001 |
X2 | 339.69 | 1 | 339.69 | 779.84 | < 0.0001 |
X3 | 63.23 | 1 | 63.23 | 145.15 | < 0.0001 |
X1X2 | 1.46 | 1 | 1.46 | 3.36 | 0.1094 |
X1X3 | 0.46 | 1 | 0.46 | 1.06 | 0.3371 |
X2X3 | 102.52 | 1 | 102.52 | 235.35 | < 0.0001 |
X12 | 46.43 | 1 | 46.43 | 106.59 | < 0.0001 |
X22 | 173.72 | 1 | 173.72 | 398.81 | < 0.0001 |
X32 | 233.27 | 1 | 233.27 | 535.53 | < 0.0001 |
残差 | 3.05 | 7 | 0.44 | ||
失拟项 | 2.09 | 3 | 0.70 | 2.92 | 0.1634 |
纯误差 | 0.95 | 4 | 0.24 | ||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
0.66 | 0.9976 | 0.9945 | 0.9721 | 79.15 | 48.097 |
表6 BBD模型的方差及显著性
Table 6 The ANOVA and statistical criteria of BBD model
来源 | 方差和 | 自由度 | 均方 | F值 | P值 Prob > F |
---|---|---|---|---|---|
模型 | 1253.59 | 9 | 139.29 | 319.77 | < 0.0001 |
X1 | 245.98 | 1 | 245.98 | 564.69 | < 0.0001 |
X2 | 339.69 | 1 | 339.69 | 779.84 | < 0.0001 |
X3 | 63.23 | 1 | 63.23 | 145.15 | < 0.0001 |
X1X2 | 1.46 | 1 | 1.46 | 3.36 | 0.1094 |
X1X3 | 0.46 | 1 | 0.46 | 1.06 | 0.3371 |
X2X3 | 102.52 | 1 | 102.52 | 235.35 | < 0.0001 |
X12 | 46.43 | 1 | 46.43 | 106.59 | < 0.0001 |
X22 | 173.72 | 1 | 173.72 | 398.81 | < 0.0001 |
X32 | 233.27 | 1 | 233.27 | 535.53 | < 0.0001 |
残差 | 3.05 | 7 | 0.44 | ||
失拟项 | 2.09 | 3 | 0.70 | 2.92 | 0.1634 |
纯误差 | 0.95 | 4 | 0.24 | ||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
0.66 | 0.9976 | 0.9945 | 0.9721 | 79.15 | 48.097 |
性质 | 数值 | ASTM D6751标准 |
---|---|---|
密度(20℃)/(kg/m3) | 869.43 | — |
运动黏度(40℃)/(mm2/s) | 6.34 | 1.9~6.0 |
酸值/(mg/g) | 0.37 | ≤0.50 |
含水量/(mg/kg) | 94 | ≤500 |
闪点/℃ | 170.5 | ≥130 |
铜片腐蚀度 | 1a | ≤3 |
十六烷值 | 60.9 | ≥47 |
表7 无患子生物柴油的理化性质
Table 7 The physicochemical properties of soapberry biodiesel
性质 | 数值 | ASTM D6751标准 |
---|---|---|
密度(20℃)/(kg/m3) | 869.43 | — |
运动黏度(40℃)/(mm2/s) | 6.34 | 1.9~6.0 |
酸值/(mg/g) | 0.37 | ≤0.50 |
含水量/(mg/kg) | 94 | ≤500 |
闪点/℃ | 170.5 | ≥130 |
铜片腐蚀度 | 1a | ≤3 |
十六烷值 | 60.9 | ≥47 |
序号 | 原料 | 低碳醇 | 催化剂 | 收率 / % |
---|---|---|---|---|
1 | 无患子油 | 甲醇 | — | 0 |
2 | 无患子油 | 甲醇 | H2SO4 | 91.26±0.34 |
3 | 无患子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.78±0.47 |
4 | 无患子油 | 乙醇 | [Ps-MTH][CF3SO3] | 83.17±0.28 |
5 | 无患子油 | 丙醇 | [Ps-MTH][CF3SO3] | 74.19±0.32 |
6 | 煎炸废油 | 甲醇 | [Ps-MTH][CF3SO3] | 76.77±0.61 |
7 | 棕榈油 | 甲醇 | [Ps-MTH][CF3SO3] | 84.59±0.54 |
8 | 椰子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.90±0.44 |
表8 [Ps-MTH][CF3SO3]在不同酯交换反应中的催化活性
Table 8 The catalytic activity of [Ps-MTH][CF3SO3] in different transesterifications
序号 | 原料 | 低碳醇 | 催化剂 | 收率 / % |
---|---|---|---|---|
1 | 无患子油 | 甲醇 | — | 0 |
2 | 无患子油 | 甲醇 | H2SO4 | 91.26±0.34 |
3 | 无患子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.78±0.47 |
4 | 无患子油 | 乙醇 | [Ps-MTH][CF3SO3] | 83.17±0.28 |
5 | 无患子油 | 丙醇 | [Ps-MTH][CF3SO3] | 74.19±0.32 |
6 | 煎炸废油 | 甲醇 | [Ps-MTH][CF3SO3] | 76.77±0.61 |
7 | 棕榈油 | 甲醇 | [Ps-MTH][CF3SO3] | 84.59±0.54 |
8 | 椰子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.90±0.44 |
1 | Qiu T, Guo X T, Yang J B, et al. The synthesis of biodiesel from coconut oil using novel Brønsted acidic ionic liquid as green catalyst[J]. Chemical Engineering Journal, 2016, 296: 71-78. |
2 | Feng Y Y, Li L, Wang X, et al. Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel[J]. Energy Conversion and Management, 2017, 153: 649-658. |
3 | Li L, Yi N, Wang X D, et al. Novel triazolium-based ionic liquids as effective catalysts for transesterification of palm oil to biodiesel[J]. Journal of Molecular Liquids, 2018, 249: 732-738. |
4 | Ali C H, Qureshi A S, Mbadinga S M, et al. Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: central composite design approach[J]. Renewable Energy, 2017, 109: 93-100. |
5 | Pan H, Liu X F, Zhang H, et al. Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion[J]. Renewable Energy, 2017, 107: 245-252. |
6 | Chang F, Zhou Q, Pan H, et al. Efficient production of biodiesel from Xanthium sibiricum Patr oil via supramolecular catalysis[J]. Renewable Energy, 2017, 111: 556-560. |
7 | Laesecke J, Ellis N, Production Kirchen P., analysis and combustion characterization of biomass fast pyrolysis oil - biodiesel blends for use in diesel engines[J]. Fuel, 2017, 199: 346-357. |
8 | Kafuku G, Mbarawa M. Biodiesel production from Croton megalocarpus oil and its process optimization[J]. Fuel, 2010, 89(9): 2556-2560. |
9 | Koh M Y, Mohd Ghazi T I. A review of biodiesel production from Jatropha curcas L. oil[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2240-2251. |
10 | Zhang H, Li H, Pan H, et al. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid[J]. Energy Conversion and Management, 2017, 138: 45-53. |
11 | Berchmans H J, Morishita K, Takarada T. Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas-waste food oil mixture for biodiesel production[J]. Fuel, 2013, 104: 46-52. |
12 | Elsheikh Y A. Preparation of Citrullus colocynthis biodiesel via dual-step catalyzed process using functionalized imidazolium and pyrazolium ionic liquids for esterification step[J]. Industrial Crops and Products, 2013, 49: 822-829. |
13 | Olkiewicz M, Plechkova N V, Earle M J, et al. Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids[J]. Applied Catalysis B: Environmental, 2016, 181: 738-746. |
14 | 赵晓霞, 董振浩, 刘光斌, 等. 不同种源无患子品质差异及种籽油脂肪酸分析[J]. 江西农业大学学报, 2014, 36(3): 575-581. |
Zhao X X, Dong Z H, Liu G B, et al. Difference analysis of seed qualities and composition of fatty acid of oil of sapindus mulorossi gaertn from different provenances[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(3): 575-581. | |
15 | 孙尚德, 崔龙龙, 宋范范, 等. 无患子油理化指标和甘三酯结构分析[J]. 中国油脂, 2011, 36(6): 64-67. |
Sun S D, Cui L L, Song F F, et al. Analysis of the physicochemical characteristics and triacylglycerol composition of Sapindus mukorossi Gaetrh. seed oil[J]. China Oils and Fats, 2011, 36(6): 64-67. | |
16 | 刘光斌, 赵晓霞, 胡冬南, 等. 无患子油脂的提取、理化性质及其制备生物柴油的研究[J]. 中国粮油学报, 2013, 28(3): 59-64. |
Liu G B, Zhao X X, Hu D N, et al. Study on extraction and physiochemical properties of sapindus mukorossi seed oil and preparation of biodiesel[J]. Journal of the Chinese Cereals and Oils Association, 2013, 28(3): 59-64. | |
17 | Ni W, Hua Y, Liu H Y, et al. Tirucallane-type triterpenoid saponins from the roots of Sapindus mukorossi[J]. Chemical & Pharmaceutical Bulletin, 2006, 54(10): 1443-1446. |
18 | Huang H C, Wu M D, Tsai W J, et al. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi[J]. Phytochemistry, 2008, 69(7): 1609-1616. |
19 | Huang H C, Tsai W J, Liaw C C, et al. Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi[J]. Chemical & Pharmaceutical Bulletin, 2007, 55(9): 1412-1415. |
20 | Kuo Y H, Huang H C, Yang Kuo L M, et al. New dammarane-type saponins from the galls of sapindus mukorossi[J]. Journal of Agricultural and Food Chemistry, 2005, 53(12): 4722-4727. |
21 | Ullah Z, Bustam M A, Man Z. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst[J]. Renewable Energy, 2015, 77: 521-526. |
22 | Yahya S, Muhamad Wahab S K, Harun F W. Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology[J]. Renewable Energy, 2020, 157: 164-172. |
23 | Jamil U, Husain Khoja A, Liaquat R, et al. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: a process optimization study[J]. Energy Conversion and Management, 2020, 215: 112934. |
24 | Sulaiman N F, Hashim A N N, Toemen S, et al. Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification[J]. Renewable Energy, 2020, 153: 1-11. |
25 | Xie W L, Wang H. Synthesis of heterogenized polyoxometalate-based ionic liquids with Brönsted-Lewis acid sites: a magnetically recyclable catalyst for biodiesel production from low-quality oils[J]. Journal of Industrial and Engineering Chemistry, 2020, 87: 162-172. |
26 | Guo F, Fang Z, Tian X F, et al. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids[J]. Bioresource Technology, 2011, 102(11): 6469-6472. |
27 | Clark K D, Emaus M N, Varona M, et al. Ionic liquids: solvents and sorbents in sample preparation[J]. Journal of Separation Science, 2018, 41(1): 209-235. |
28 | Zhang Q Q, Cui X B, Feng T Y, et al. Hydrolysis of methyl acetate using ionic liquids as catalyst and solvent[J]. Molecular Catalysis, 2020, 484: 110785. |
29 | Ding H, Ye W, Wang Y Q, et al. Process intensification of transesterification for biodiesel production from palm oil: microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids[J]. Energy, 2018, 144: 957-967. |
30 | He Y F, Han X X, Chen Q, et al. Transesterification of soybean oil to biodiesel by Brønsted-type ionic liquid acid catalysts[J]. Chemical Engineering & Technology, 2013, 36(9): 1559-1567. |
31 | Fan P, Xing S Y, Wang J Y, et al. Sulfonated imidazolium ionic liquid-catalyzed transesterification for biodiesel synthesis[J]. Fuel, 2017, 188: 483-488. |
32 | Cai D R, Xie Y W, Li L, et al. Design and synthesis of novel Brønsted-Lewis acidic ionic liquid and its application in biodiesel production from soapberry oil[J]. Energy Conversion and Management, 2018, 166: 318-327. |
33 | Xue Z M, Qin L, Jiang J Y, et al. Thermal, electrochemical and radiolytic stabilities of ionic liquids[J]. Physical Chemistry Chemical Physics, 2018, 20(13): 8382-8402. |
34 | Wang B, Qin L, Mu T, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[4] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[15] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||