化工学报 ›› 2016, Vol. 67 ›› Issue (1): 73-82.DOI: 10.11949/j.issn.0438-1157.20151556
杨晓丽, 苏雄, 杨小峰, 黄延强, 王爱琴, 张涛
收稿日期:
2015-10-14
修回日期:
2015-11-26
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
张涛
基金资助:
国家自然科学基金项目(21203182,21476226,21506204)。
YANG Xiaoli, SU Xiong, YANG Xiaofeng, HUANG Yanqiang, WANG Aiqin, ZHANG Tao
Received:
2015-10-14
Revised:
2015-11-26
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China(21203182, 21476226, 21506204).
摘要:
负载型金属催化剂是一类重要的催化材料,在石油炼制、环境保护以及材料合成等领域起着重要的作用。然而,由于活性金属在反应环境下容易烧结团聚,以致活性降低乃至失活,因此,如何提高其热稳定性成为负载型金属催化剂研究的一个关键问题。概述了催化剂的金属团聚成因及其稳定机制。简要介绍了Ostwald效应以及颗粒合并长大两种团聚模型,从热力学角度解释了导致催化剂烧结团聚的原因。总结了现阶段几种提高负载型金属催化剂热稳定性能的方法,具体包括以包覆封装隔离为原理的物理方法,以及以形成化学键为基础的化学方法,可为进一步开发高热稳定性的负载型金属催化剂提供借鉴。
中图分类号:
杨晓丽, 苏雄, 杨小峰, 黄延强, 王爱琴, 张涛. 负载型金属催化剂的热稳定机制[J]. 化工学报, 2016, 67(1): 73-82.
YANG Xiaoli, SU Xiong, YANG Xiaofeng, HUANG Yanqiang, WANG Aiqin, ZHANG Tao. Stabilization mechanism of supported metal catalyst[J]. CIESC Journal, 2016, 67(1): 73-82.
[1] | 黄仲涛. 工业催化剂手册[M]. 北京: 化学工业出版社, 2004.HUANG Z T. Handbook of Industrial Catalysts[M]. Beijing: Chemical Industry Press, 2004. |
[2] | 曾成华. 负载型金属催化剂的研究进展 [J]. 攀枝花学院学报, 2006, 23(2): 110-114. DOI: 10.3969/j.issn.1672-0563.2006.02.033.ZENG C H. The research progress of supported metal catalysts [J]. Journal of Panzhihua University, 2006, 23(2): 110-114. DOI: 10.3969/j.issn.1672-0563.2006.02.033. |
[3] | 郑双双, 刘利平. 负载型金属催化剂制备新技术研究进展 [J]. 广东化工, 2012, 39(9): 12-13. DOI: 10.3969/j.issn.1007-1865. 2012.09.006.ZHENG S S, LIU L P. Research progress of new technology on supported metal catalyst preparation [J]. Guangdong Chemical Industry, 2012, 39(9): 12-13. DOI: 10.3969/j.issn.1007-1865. 2012.09.006. |
[4] | GATES B C. Supported metal cluster catalysts: progress and perspectives//Abstracts of Papers of the American Chemical Society[C]. 2001: 222, U198. |
[5] | 张以敏, 姜浩锡. 超临界流体沉积技术制备负载型金属催化剂的研究进展 [J]. 化工进展, 2013, (8): 1825-1831. DOI: 10.3969/j.issn. 1000-6613.2013.08.018.ZHANG Y M, JIANG H X. Preparation of supported metal catalyst via supercritical fluid deposition [J]. Chemical Industry and Engineering Progress, 2013, (8): 1825-1831. DOI: 10.3969/j.issn.1000-6613.2013.08.018. |
[6] | THOMAS J M, JOHNSON B F G, RAJA R, et al. High-performance nanocatalysts for single-step hydrogenations [J]. Cheminform, 2003, 36(16): 20-30. |
[7] | YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis [J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
[8] | QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx [J]. Nature Chemistry, 2011, 3(8): 634-641. |
[9] | JAIN P K, HUANG X, EL-SAYED I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine [J]. Accounts of Chemical Research, 2008, 41(12): 1578-1586. |
[10] | TOH H S, COMPTON R G. ‘Nano-impacts': an electrochemical technique for nanoparticle sizing in optically opaque solutions [J]. Chemistryopen, 2015, 4(3): 261-263. |
[11] | 李令成, 蓝蕴基. 肼分解催化剂进展 [J]. 工业催化,1994, 1(1): 3-7.LI L C, LAN Y J. Process in hydrazine decomposition catalysts [J]. Industrial Catalysis, 1994, 1(1): 3-7. |
[12] | 吴霞. 负载金属催化剂的结构性能表征 [J]. 广东化工, 2012, 39(9): 39. DOI: 10.3969/j.issn.1007-1865.2012.09.020.WU X. Structure characterization of supported metal clusters [J]. Guangdong Chemical Industry, 2012, 39(9): 39. DOI: 10.3969/j.issn. 1007-1865.2012.09.020. |
[13] | 杨春雁, 杨卫亚, 凌凤香, 等. 负载型金属催化剂表面金属分散度的测定 [J]. 化工进展, 2010, 29(8): 1468-1473.YANG C Y, YANG W Y, LING F X, et al. Determination of metal dispersion on supported metal catalyst surface [J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1468-1473. |
[14] | LORIA H, PEREIRA-ALMAO P, SCOTT C E. Determination of agglomeration kinetics in nanoparticle dispersions [J]. Industrial & Engineering Chemistry Research, 2011, 50: 8529-8535. |
[15] | 萨特菲尔德. 实用多相催化[M]. 庞礼, 译. 北京: 北京大学出版社,1990.SATTERFIELD C N. Practical Heterogeneous Catalysis[M]. PANG L, trans. Beijing: Beijing University Press, 1990. |
[16] | HANSEN T W, DELARIVA A T, CHALLA S R, et al. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? [J]. Accounts of Chemical Research, 2013, 46(8): 1720-1730. |
[17] | VOORHEES P W. The theory of Ostwald ripening [J]. Journal of Statistical Physics, 1985, 38(1/2): 231-252. |
[18] | KISTAMURTHY D, SAIB A M, MOODLEY D J, et al. Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Fischer-Tropsch synthesis conditions [J]. Journal of Catalysis, 2015, 328: 123-129. |
[19] | LIU B, ZENG H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors [J]. Small, 2005, 1(5): 566-571. |
[20] | OUYANG R H, LIU J X, LI W X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions [J]. Journal of the American Chemical Society, 2013, 135(5): 1760-1771. |
[21] | RASMUSSEN D B, JANSSENS T V W, TEMEL B, et al. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT [J]. Journal of Catalysis, 2012, 293(1): 205-214. |
[22] | FINNEY E E, SHIELDS S P, BUHRO W E, et al. Gold nanocluster agglomeration kinetic studies: evidence for parallel bimolecular plus autocatalytic agglomeration pathways as a mechanism-based alternative to an avrami-based analysis [J]. Chemistry of Materials, 2012, 24(10): 1718-1725. |
[23] | BAYRAM E, LU J, AYDIN C, et al. Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps [J]. ACS Catalysis, 2015, 5(6): 3514-3527. |
[24] | SHIRAKAWA H, KOMIYAMA H. Migration-coalescence of nanoparticles during deposition of Au, Ag, Cu, and GaAs on amorphous SiO2 [J]. Journal of Nanoparticle Research, 1999, 1(1): 17-30. |
[25] | ZHANG W J, MISER D E. Coalescence of oxide nanoparticles: in situ HRTEM observation [J]. Journal of Nanoparticle Research, 2006, 8(6): 1027-1032. |
[26] | LUND C R F, DUMESIC J A. Strong oxide-oxide interactions in silica-supported magnetite catalysts(Ⅳ): Catalytic consequences of the interaction in water-gas shift [J]. Journal of Catalysis, 1982, 76(82): 93-100. |
[27] | SHEN G C, ICHIKAWA M. Methane hydrogenation and confirmation of CHx intermediate species on NaY encapsulated cobalt clusters and Co/SiO2 catalysts: EXAFS, FTIR, UV characterization and catalytic performances [J]. Journal of the Chemical Society Faraday Transactions, 1997, 93(6): 1185-1193. |
[28] | RASHKEEV S N, DAI S, OVERBURY S H. Modification of Au/TiO2 nanosystems by SiO2 monolayers: toward the control of the catalyst activity and stability [J]. Journal of Physical Chemistry C, 2010, 114(7): 2996-3002. |
[29] | 李雷, 李彦兴, 姚瑶, 等. 核壳结构纳米材料的创制及在催化化学中的应用 [J]. 化工进展, 2013, 25(10): 1681-1690.LI L, LI Y X, YAO Y, et al. Process and prospective in fabrication and application of core-shell structure nanomaterials in catalytic chemistry [J]. Chemical Industry and Engineering Progress, 2013, 25(10): 1681-1690. |
[30] | LONG N V, YANG Y, THI C M, et al. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells [J]. Nano Energy, 2013, 2(5): 636-676. |
[31] | YONG W, MIN Y L, YU S H. Synthesis of silica/carbon-encapsulated core-shell spheres: templates for other unique core-shell structures and applications in in situ loading of noble-metal nanoparticles [J]. Langmuir, 2008, 24(9): 5024-5028. |
[32] | HE B B, ZHAO Q G, ZENG Z G, et al. Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core-shell catalyst for CO oxidation at low temperature [J]. Journal of Materials Science, 2015, 50 (19): 6339-6348. |
[33] | ADIJANTO L, SAMPATH A, YU A S, et al. Synthesis and stability of Pd@CeO2 core-shell catalyst films in solid oxide fuel cell anodes [J]. ACS Catalysis, 2013, 3(8): 1801-1809. |
[34] | JOO S H, PARK J Y, TSUNG C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions [J]. Nature Materials, 2009, 8(2): 126-131. |
[35] | LEE I, ZHANG Q, GE J P, et al. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability [J]. Nano Research, 2011, 4(1): 115-123. |
[36] | LAUHON L J, GUDIKSEN M S, WANG C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature, 2002, 420(6911): 57-61. |
[37] | SCHWARZE M, KEILITZ J, NOWAG S, et al. Quasi-homogeneous hydrogenation with platinum and palladium nanoparticles stabilized by dendritic core-multishell architectures [J]. Langmuir, 2011, 27(10): 6511-6518. |
[38] | CHEN C, FANG X L, WU B H, et al. A multi-yolk-shell structured nanocatalyst containing sub-10 nm Pd nanoparticles in porous CeO2 [J]. Chemcatchem, 2012, 4(10): 1578-1586. |
[39] | ZHANG Q, LEE I, JOO J B, et al. Core-shell nanostructured catalysts [J]. Accounts of Chemical Research, 2012, 46(8): 1816-1824. |
[40] | TIAN H, LI X, ZENG L, et al. Recent advances on the design of group Ⅷ base-metal catalysts with encapsulated structures [J]. ACS Catalysis, 2015, 5(8): 4959-4977. |
[41] | LU J, AYDIN C, BROWNING N D, et al. Imaging isolated gold atom catalytic sites in zeolite NaY [J]. Angewandte Chemie International Edition, 2012, 51(24): 5842-5846. |
[42] | RAO L F, PRUSKI M, KING T S. Structure and stability of rhodium clusters in NaY studied by NMR and FTIR [J]. The Journal of Physical Chemistry B, 1997, 101(29): 5717-5724. |
[43] | LAURSEN A B, HOJHOLT K T, LUNDEGAARD L F, et al. Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles [J]. Angewandte Chemie International Edition, 2010, 122(20): 3582-3585. |
[44] | WU Z J, GOEL S, CHOI M, et al. Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity [J]. Journal of Catalysis, 2014, 311: 458-468. |
[45] | 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.XU R R. Molecular Sieve and Porous Material Chemistry [M]. Beijing: Science Press, 2004. |
[46] | HUANG W, KUHN J N, TSUNG C K, et al. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation [J]. Nano Letters, 2008, 8(7): 2027-2034. |
[47] | JIANG Y J, GAO Q M. Heterogeneous hydrogenation catalyses over recyclable Pd(0) nanoparticle catalysts stabilized by PAMAM-SBA-15 organic-inorganic hybrid composites [J]. Journal of the American Chemical Society, 2006, 128(3): 716-717. |
[48] | ZHANG H, SUN J M, MA D, et al. Unusual mesoporous SBA-15 with parallel channels running along the short axis [J]. Journal of the American Chemical Society, 2004, 126(24): 7440-7441. |
[49] | RIBEIRO R U, MEIRA D M, RODELLA C B, et al. Probing the stability of Pt nanoparticles encapsulated in sol-gel Al2O3 using in situ and ex situ characterization techniques [J]. Applied Catalysis A General, 2014, 485: 108-117. |
[50] | GAO P, WANG A, WANG X, et al. Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic-organic self-assembly [J]. Chemistry of Materials, 2008, 20(5): 1881-1888. |
[51] | O'NEILL B J, JACKSON D H K, LEE J, et al. Catalyst design with atomic layer deposition [J]. ACS Catalysis, 2015, 5(3): 1804-1825. |
[52] | SARR M, BAHLAWANE N, ARL D, et al. Tailoring the properties of atomic layer deposited nickel and nickel carbide thin films via chain-length control of the alcohol reducing agents [J]. Journal of Physical Chemistry C, 2014, 118(40): 23385-23392. |
[53] | YAN H, CHENG H, YI H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene [J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487. |
[54] | LU J L, STAIR P C. Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles [J]. Angewandte Chemie International Edition, 2010, 49(14): 2547-2551. |
[55] | LU J L, ELAM J W, STAIR P C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition [J]. Accounts of Chemical Research, 2013, 46(8): 1806-1815. |
[56] | LU J L, FU B S, KUNG M C, et al. Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition [J]. Science, 2012, 335(6073): 1205-1208. |
[57] | LIANG X H, LI J H, YU M, et al. Stabilization of supported metal nanoparticles using an ultrathin porous shell [J]. ACS Catalysis, 2011, 1(10): 1162-1165. |
[58] | SUNG J, KOSUDA K M, ZHAO J, et al. Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation [J]. The Journal of Physical Chemistry C, 2008, 112(15): 5707-5714. |
[59] | LIU X Y, WANG A Q, ZHANG T, et al. Catalysis by gold: new insights into the support effect [J]. Nano Today, 2013, 8(4): 403-416. |
[60] | LIU X Y, LIU M H, LUO Y C, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]. Journal of the American Chemical Society, 2012, 134(24): 10251-10258. |
[61] | YANG M, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction [J]. Journal of the American Chemical Society, 2013, 135: 3768-3771. |
[62] | FLYTZANI-STEPHANOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction [J]. Accounts of Chemical Research, 2013, 47(3): 783-792. |
[63] | KWAK J H, HU J Z, MEI D, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3 [J]. Science, 2009, 325(5948): 1670-1673. |
[64] | YANG M, LI S, WANG Y, et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides [J]. Science, 2014, 346(6216): 1498-1501. |
[65] | LI W Z, KOVARIK L, MEI D H, et al. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports [J]. Chemistry of Materials, 2014, 26(19): 5475-5481. |
[66] | GUO X G, FANG G Z, LI G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen [J]. Science, 2014, 344(6184): 616-619. |
[67] | CAMPBELL C T, PEDEN C H F. Chemistry-oxygen vacancies and catalysis on ceria surfaces [J]. Science, 2005, 309(5735): 713-714. |
[68] | FARMER J A, CAMPBELL C T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding [J]. Science, 2010, 329(5994): 933-936. |
[69] | TA N, LIU J Y, CHENNA S, et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring [J]. Journal of the American Chemical Society, 2012, 134(51): 20585-20588. |
[70] | SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction [J]. Angewandte Chemie International Edition, 2008, 120(15): 2926-2929. |
[71] | LIN Q Q, HUANG Y Q, WANG Y, et al. RuO2/rutile-TiO2: a superior catalyst for N2O decomposition [J]. Journal of Materials Chemistry A, 2014, 2(15): 5178-5181. |
[72] | WANG A Q, LIU X Y, MOU C Y, et al. Understanding the synergistic effects of gold bimetallic catalysts [J]. Journal of Catalysis, 2013, 308(4): 258-271. |
[73] | PEI G X, LIU X Y, WANG A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene [J]. ACS Catalysis, 2015, 5(6): 3717-3725. |
[74] | XU J, WHITE T, LI P, et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation [J]. Journal of the American Chemical Society, 2010, 132(30): 10398-10406. |
[75] | ZHANG H J, WATANABE T, OKUMURA M, et al. Catalytically highly active top gold atom on palladium nanocluster [J]. Nature Materials, 2011, 11(1): 49-52. |
[76] | ZHANG L L, WANG A Q, MILLER J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water [J]. ACS Catalysis, 2014, 4(5): 1546-1553. |
[77] | CHENG D J, HUANG S P, WANG W C. Thermal behavior of core-shell and three-shell layered clusters: melting of Cu1Au54 and Cu12Au43 [J]. Physical Review B, 2006, 74(6). DOI: 10. 1103/physRevB.74.064117. |
[78] | LIU X Y, WANG A Q, YANG X F, et al. Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports [J]. Chemistry of Materials, 2008, 21(2): 410-418. |
[79] | HE L, HUANG Y Q, WANG A Q, et al. Surface modification of Ni/Al2O3 with Pt: highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine [J]. Journal of Catalysis, 2013, 298(1): 1-9. |
[80] | HE L, HUANG Y Q, LIU X Y, et al. Structural and catalytic properties of supported Ni-Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition [J]. Applied Catalysis B Environmental, 2014, 147(14): 779-788. |
[81] | CAO A, VESER G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles [J]. Nature Materials, 2010, 9(1): 75-81. |
[82] | LI W J, WANG A Q, LIU X Y, et al. Silica-supported Au-Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols [J]. Applied Catalysis A: General, 2012, 433: 146-151. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[5] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[6] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[7] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[8] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[9] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[10] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[11] | 张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527. |
[12] | 陈向上, 马振杰, 任希华, 贾悦, 吕晓龙, 陈华艳. 三维网络萃取膜的制备及传质效率研究[J]. 化工学报, 2023, 74(3): 1126-1133. |
[13] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[14] | 姚翰林, 辛忠. 液相沉淀反应在管式微通道反应器中的流动行为研究[J]. 化工学报, 2022, 73(8): 3518-3528. |
[15] | 李亚芾, 付亮亮, 白浩隆, 白丁荣, 许光文. 菱镁矿浮选尾矿直接合成同时制备镁橄榄石和镁砂研究[J]. 化工学报, 2022, 73(8): 3679-3687. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||