[1] |
MATRANGA K R, MYERS A L, GLANDT E D. Storage of natural gas by adsorption on activated carbon[J]. Chemical Engineering Science, 1992. 47:1569-1579.
|
[2] |
ZHOU L, LIU J, SU W, et al. Progress in studies of natural gas storage with wet adsorbents[J]. Energy & Fuels, 2010, 24(7):3789-3795.
|
[3] |
SAHOO P K, JOHN M, NEWALKAR B L, et al. Filling characteristics for an activated carbon based adsorbed natural gas storage system[J]. Industrial & Engineering Chemistry Research, 2011, 50(23):13000-13011.
|
[4] |
廖志敏, 蒋洪. 吸附天然气技术及其应用[J]. 油气运输, 2005, 24(4):19-22. LIAO Z M, JIANG H. Adsorbed natural gas technology and application[J]. Oil & Gas Storage and Transportation, 2005, 24(4):19-22.
|
[5] |
CELZARD A, FIERRO V. Preparing a suitable material designed for methane storage:a comprehensive report[J]. Energy & Fuels, 2005, 19:573-583.
|
[6] |
陈志冲, 丁立中, 宋强. 分子筛吸附剂中毒后空分装置的安全生产分析[J]. 化工技术与开发, 2014, 43(3):53-54. CHEN Z C, DING L Z, SONG Q. Safety production analysis of air separation plant after molecular sieve adsorbent poisonining[J]. Technology & Development of Chemical Industry, 2014, 43(3):53-54.
|
[7] |
LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5):1477-1504.
|
[8] |
LU X, JIN D, WEI S, et al. Competitive adsorption of binary CO2/CH4 mixture in nanoporous carbons:effect of edge-functionalization[J]. Nanoscale, 2014, 7(3):1002-1012. DOI:10.1039/c4nr05128a.
|
[9] |
BILOE S, GOETZA V. Optimal design of an activated carbon for an adsorbed natural gas storage system[J]. Carbon, 2002, 40:1295-1308.
|
[10] |
梁健, 蔡勤, 李波, 等. KOH活化糯稻秸秆制备活性炭的工艺条件及其吸附性能研究[J]. 农业科学与技术, 2015, 16(11):2549-2551. LIANG J, CAI Q, LI B, et al. Preparation and adsorption properties of activated carbon from glutinous rice straw by KOH method[J]. Agricultural Science & Technology, 2015, 16(11):2549-2551.
|
[11] |
KUNOWSKY M, SUAREZ-GRCIA F, LINARES-SOLANO A. Adsorbent density impact on gas storage capacities[J]. Microporous and Mesoporous Materials, 2013, 173:47-52.
|
[12] |
DAI W, LIU Y, SU W, et al. Preparation and CO2 sorption of a high surface area activated carbon obtained from the KOH activation of finger citron residue[J]. Adsorption Science & Technology, 2012, 30:183-190.
|
[13] |
李国强, 田福海, 张永发. 胺化竹木褐煤活性炭的表面特性及其脱除SO2性能[J]. 新型炭材料, 2014, 29:486-492. LI G Q, TIAN F H, ZHANG Y F. Bamboo/lignite-based activated carbons produced by steam activation with and without ammonia for SO2 adsorption[J]. New Carbon Materials, 2014, 29:486-492.
|
[14] |
曹达鹏, 汪文川, 段雪, 等.层柱状微孔材料吸附存储天然气的Monte Carlo模拟[J]. 化学学报, 2001, 59(2):297-300. CAO D P, WANG W C, DUAN X, et al. Monte Carlo simulation of natural gas adsorption storage in pillared layered material[J]. Acta Chimica Sinica, 2001, 59(2):297-300.
|
[15] |
MARCO-LOZAR J P, KUNOWSKY M, SUAREZ-GRCIA F, et al. Activated carbon monoliths for gas storage at room temperature[J]. Energy & Environmental Science, 2012, 5(12):9833-9842. DOI:10.1039/C2EE22769J.
|
[16] |
ALBESA A G, RAFTI M, VICENTE J L, et al. Adsorption of CO2/CH4 mixtures in a molecular model of activated carbon through Monte Carlo simulations[J]. Adsorption Science & Technology, 2012, 30(8/9):669-689.
|
[17] |
简相坤, 刘石彩. 活性炭微结构与吸附、解吸CO2的关系[J]. 煤炭学报, 2013, 38(2):326-330. JIAN X K, LIU C S. Effect of adsorption and desorption CO2 on micro-structures of activated carbon[J]. Journal of China Coal Society, 2013, 38(2):326-330.
|
[18] |
DELAVAR M, ASGHAR G A, JAHANSHAHI M, et al. Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material[J]. RSC Advances, 2012, 2(10):4490.
|
[19] |
WU X, YANG X. Molecular simulation of adsorption and diffusion of CH4 and H2 in ZIF-8 material[J]. Acta Chimica Sinica, 2012, 70(24):2518-2524.
|
[20] |
GUPTA A, CHEMPATH S, SANBORN MJ, et al. Object-oriented programming paradigms for molecular modeling[J]. Molecular Simulation, 2003, 29(1):29-46.
|
[21] |
曹伟, 吕玲红, 王珊珊, 等. 不同管径碳纳米管中CO2/CH4分离的分子模拟[J]. 化工学报, 2014, 65(5):1737-1742. CAO W, LÜ L H, WANG S S, et al. Molecular simulations on diameter effect of carbon nanotube for separation of CO2/CH4[J]. CIESC Journal, 2014, 65(5):1737-1742.
|
[22] |
JIANG S Y, GUBBINS K E, ZOLLWEG J A. Adsorption isosteric heat and commensurate incommensurate transition of methane on graphite[J]. Molecular Physics, 1993, 80:103-116.
|
[23] |
HUANG L L, ZHANG L Z, SHAO Q, et al. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes temperature, pressure, and pore size effects[J]. J. Phys. Chem. C, 2007, 111(32):11912-11920.
|
[24] |
LÜ L H, WANG S S, MUELLER E A, et al. Adsorption and separation of CO2/CH4 mixtures using nanoporous adsorbents by molecular simulation[J]. Fluid Phase Equilibria, 2014, 362:227-234.
|
[25] |
POTOFF J J, SIEPMANN J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE Journal, 2001, 47(7):1676-1682.
|
[26] |
SUN Y X, SPELLMEYER D, PEARLMAN D A, et al. Simulation of the solvation free energies for methane, ethane, and propane and corresponding amino acid dipeptides:a critical test of the bond-PMF correction, a new set of hydrocarbon parameters, and the gas phase-water hydrophobicity scale[J]. Journal of the American Chemical Society, 1992, 114(17):6798-6801.
|
[27] |
STRIOLS A. Water self-diffusion through narrow oxygenated carbon nanotubes[J/OL]. Nanotechnology, 2007, 18(47):475704. iopscience.iop.org/article/10.1088/0957-4484/18/47/475704.
|
[28] |
FURMANIAK S, KOWALCZYK P, TERZYK AP, et al. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures[J]. Journal of Colloid and Interface Science, 2013, 397:144-153.
|
[29] |
HEUCHEL M, DAVIES G, BUSS E, et al. Adsorption of carbon dioxide and methane and their mixtures on an activated carbon:simulation and experiment[J]. Langmuir, 1999, 15(25):8695-8705.
|
[30] |
BAGHERI N, ABEDI J. Adsorption of methane on corn cobs based activated carbon[J]. Chemical Engineering Research & Design, 2011, 89(10A):2038-2043.
|
[31] |
苏艳敏, 徐绍平, 王吉峰, 等. 活性炭的微孔结构对其选择性吸附CH4/N2混合气中CH4的影响[J]. 天然气工业, 2013, 33:89-94. SU Y M, XU S P, WANG J F, et al. Influence of micropore structure of activated carbons on their selective adsorption of CH4 from CH4/N2 mixture[J]. Nature Gas Industry, 2013, 33:89-94.
|
[32] |
苏伟, 周理, 周亚平, 等. 孔结构对活性炭吸附CH4和CO2的影响[J]. 天然气工业, 2006, 26:147-149. SU W, ZHOU L, ZHOU Y P, et al. Influence of pore structure of activate carbon with high surface area on adsorption of methane and carbon dioxide[J]. Nature Gas Industry, 2006, 26:147-149.
|
[33] |
GÓMEZ-GUALDRÓN D A, WILMER C E, SNURR R Q, et al. Exploring the limits of methane storage and delivery in nanoporous materials[J]. The Journal of Physical Chemistry C, 2014, 118(13):6941-6951.
|
[34] |
LOH W S, RAHMAN K A, CHAKRABORTY A, et al. Improved isotherm data for adsorption of methane on activated carbons[J]. J. Chem. Eng. Data, 2010, 55:2840-2847.
|
[35] |
KANEKO Y, OHBU T K, UEKAWA N, et al. Evaluation of low concentrated hydrophilic sites on microporous carbon surfaces with an X-ray photoelectron spectroscopy ratio method[J]. Langmuir, 1995, 11:708-710.
|
[36] |
SALAME I I, BANDOSZ T J. Experimental study of water adsorption on activated carbons[J]. Langmuir, 1999, 15:587-593.
|