化工学报 ›› 2016, Vol. 67 ›› Issue (8): 3121-3132.doi: 10.11949/j.issn.0438-1157.20160404

• 综述与专论 • 上一篇    下一篇

FCC反应过程的CFD模拟进展

鲁波娜, 张景远, 王维, 李静海   

  1. 中国科学院过程工程研究所, 多相复杂系统国家重点实验室, 北京 100190
  • 收稿日期:2016-03-31 修回日期:2016-04-27 出版日期:2016-08-05 发布日期:2016-08-05
  • 通讯作者: 鲁波娜 E-mail:bnlu@ipe.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB215003);国家自然科学基金项目(21576263);中国科学院青年创新促进会。

CFD modeling of FCC reaction process: a review

LU Bona, ZHANG Jingyuan, WANG Wei, LI Jinghai   

  1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-03-31 Revised:2016-04-27 Published:2016-08-05 Online:2016-08-05
  • Supported by:

    supported by the National Basic Research Program of China (2012CB215003), the National Natural Science Foundation of China (21576263) and the Youth Innovation Promotion Association CAS.

摘要:

流化催化裂化(fluid catalytic cracking,FCC)工艺是石油炼制中的重要转化工艺,用于生产汽油、柴油、轻质烯烃等重要化工原料。FCC反应过程的CFD模拟有助于理解FCC反应器中流动和反应行为,辅助设计和优化FCC工艺设备,最终指导工业生产和实现虚拟调控和放大。从与FCC反应模拟相关的多相流动模型、反应动力学模型以及流动与反应之间耦合等方面做了回顾和总结。在流动与反应耦合研究方面,从湍流模型的使用、流动结构的影响、精细化模型的发展以及原油汽化模型的重要性这4个角度做了分析比较及总结。基于已有的研究工作,认为虽然很多研究表明CFD模拟能较好地揭示工业FCC提升管反应器内的流动和反应行为,但缺乏采用同一方法实现从小试到工业反应器模拟放大的实例,从侧面反映了当前的FCC理论模型和模拟技术还远未达到可以代替实验的水平。展望未来的FCC反应模拟,建议从模型精细度和计算效率上加强研发,并在此两方面寻求平衡,最终实现虚拟调控。

关键词: 催化裂化, 多相流, 反应动力学, 双流体模型, 模拟

Abstract:

Fluid catalytic cracking (FCC) is a crucial conversion process in a petroleum refinery, which produces important chemicals, e.g. gasoline, diesel, light olefins, etc. Computational fluid dynamics (CFD) modeling of FCC reaction processes assists to understand the behaviors of flow and reaction in FCC riser reactors, design and optimize the FCC units, and finally provide the guidance for production and implement the virtual tuning and scale up of processes. This study reviews the recent processes in the multiphase flow models, reaction kinetics and the coupling between flow and FCC reaction. In terms of the coupling approaches, summaries and critical comments are present from the usage of turbulent models, the impact of flow structures, more sophisticated models to crude oil vaporization models. Based on the previous studies, it is pointed out by the authors that although CFD modeling can well reveal the behaviors of flow and reaction in FCC riser reactor of industrial scale, the current theoretical models and modeling techniques have a long way to run up with the experiment counterpart since there is no successful application of CFD reactive modeling of a series of FCC riser reactors ranging from a bench scale to the industrial scale. For the future of FCC reactive modeling, it is very necessary to emphasize the studies on the modeling and the computing efficiency, then strike a balance between them to realize the virtual process engineering.

Key words: FCC, multiphase flow, reaction kinetics, two-fluid model, simulation

中图分类号: 

  • TQ021.1
[1] DUTTA A,CONSTALES D,HEYNDERICKX G J.Applying the direct quadrature method of moments to improve multiphase FCC riser reactor simulation[J].Chem.Eng.Sci.,2012,83:93-109.
[2] ZHU C,JUN Y,PATEL R,et al.Interactions of flow and reaction in fluid catalytic cracking risers[J].AIChE Journal,2011,57(11):3122-3131.
[3] 许友好,汪燮卿.催化裂化过程反应化学的进展[J].中国工程科学,2007,9(8):6-14.XU Y H,WANG X Q.Advance in FCC process reaction chemistry[J].Engineering Sciences,2007,9(8):6-14
[4] 陈俊武.催化裂化工艺与工程[M].2版.北京:中国石油出版社,2005.CHEN J W.Catalytic Cracking Process and Engineering[M].2nd ed.Beijing:China Petrochemical Press,2005.
[5] CHEN Y M.Recent advances in FCC technology[J].Powder Tech.,2006,163:2-8.
[6] 许友好,张久顺,龙军.生产清洁汽油组分的催化裂化新工艺MIP[J].石油炼制与化工,2001,32(8):1-5.XU Y H,ZHANG J S,LONG J.A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J].Petroleum Processing and Petrochemicals,2001,32(8):1-5.
[7] 许友好,张久顺,龙军,等.多产异构烷烃的催化裂化工艺技术开发与工业应用[J].中国工程科学,2003,5(5):55-58.XU Y H,ZHANG J S,LONG J,et al.Development and commerical application of FCC process for maximizing iso-paraffins (MIP) in cracked naphtha[J].Engineering Sciences,2003,5(5):55-58.
[8] 山红红,李春义,钮根林,等.流化催化裂化技术研究进展[J].石油大学学报(自然科学版),2005,29(6):135-150.SHAN H H,LI C Y,NIU G L,et al.Research progress in fluid catalytic cracking technology[J].Journal of the University of Petroleum,China,2005,29(6):135-150.
[9] 杨朝合,山红红,张建芳,等.传统催化裂化提升管反应器的弊端与两段提升管催化裂化[J].中国石油大学学报(自然科学版),2007,31:127-138.YANG C H,SHAN H H,ZHANG J F,et al.Shortcoming of conversional RFCC reactor and advantage of TSRFCC technology[J].Journal of China University of Petroleum,2007,31:127-138.
[10] LI J H,KWAUK M.Paticle-Fluid Two-Phase Flow:the Energy-Minimization Multi-Scale Method[M].Beijing:Metallurgical Industry Press,1994.
[11] WANG X H,GAO S Q,XU Y H,et al.Gas-solids flow patterns in a novel dual-loop FCC riser[J].Powder Tech.,2005,152:90-99.
[12] LU B N,WANG W,LI J H,et al.Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J].Chem.Eng.Sci.,2007,62(18/19/20):5487-5494.
[13] 鲁波娜,程从礼,鲁维民,等.基于多尺度模型的MIP提升管反应历程数值模拟[J].化工学报,2013,64(6):1983-1992.LU B N,CHENG C L,LU W M,et al.Numerical simulation of reaction process in MIP riser based on multi-scale model[J].CIESC Journal,2013,64(6):1983-1992.
[14] PINHEIRO C I C,FERNANDES J L,DOMINGUES L,et al.Fluid catalytic cracking (FCC) process modeling,simulation,and control[J].Ind.Eng.Chem.Res.,2012,51(1):1-29.
[15] GUPTA R K,KUMAR V,SRIVASTAVA V K.Modeling of fluid catalytic cracking riser reactor:a review[J].Inter.J.Chem.Reactor Eng.,2010,8:R6.
[16] 杨朝合,杜玉朋,赵辉.催化裂化提升管反应器流动反应耦合模型研究进展[J].化工进展,2015,34(3):608-616.YANG C H,DU Y P,ZHAO H.Evolvement of flow-reaction models for fluid catalytic cracking riser reactors[J].Chemical Industry and Engineering Progress,2015,34(3):608-616.
[17] GIDASPOW D.Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions[M].Boston:Academic Press,1994.
[18] ANSYS Inc.ANSYS Fluent Theory Guide (release 15.0)[EB/OL].http://www.ansys.com,2013.
[19] IGCI Y,PANNALA S,BENYAHIA S,et al.Validation studies on filtered model equations for gas-particle flows in risers[J].Ind.Eng.Chem.Res.,2012,51:2094-2103.
[20] OZARKAR S S,YAN X,WANG S,et al.Validation of filtered two-fluid models for gas-particle flows against experimetal data from bubbling fluidized bed[J].Powder Tech.,2015,284:159-169.
[21] HOLLOWAY W,SUNDARESAN S.Filtered models for reactng gas-particle flows[J].Chem.Eng.Sci.,2012,82:132-143.
[22] IGCI Y,ANDREWS Ⅳ A T,SUNDARESAN S,et al.Filtered two-fluid models for fluidized gas-particle suspensions[J].AIChE J.,2008,54(6):1431-1448.
[23] AGRAWAL K,LOEZOS P N,SYAMLAL M,et al.The role of mesoscale structures in rapid gas-solid flows[J].J.Fluid Mech.,2001,445:151-185.
[24] MILIOLI C C,MILIOLI F E,HOLLOWAY W,et al.Filtered two-fluid models of fluidized gas-particle flows:new constitutive relations[J].AIChE J.,2013,59(9):3265-3275.
[25] ANDREWS Ⅳ A T.Filtered models for gas-particle flow hydrodynamics[D].Princeton University,2007.
[26] YANG N,WANG W,GE W,et al.CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J].Chem.Eng.J.,2003,96:71-80.
[27] YANG N,WANG W,GE W,et al.Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J].Ind.Eng.Chem.Res.,2004,43(18):5548-5561.
[28] WANG W,LI J H.Simulation of gas-solid two-phase flow by a multi-scale CFD approach-extension of the EMMS model to the sub-grid level[J].Chem.Eng.Sci.,2007,62(1/2):208-231.
[29] LU B N,WANG W,LI J H.Eulerian simulation of gas-solid flows with particles of Geldart groups A,B and D using EMMS-based meso-scale model[J].Chem.Eng.Sci.,2011,66(20):4624-4635.
[30] WANG J W,GE W,LI J H.Eulerian simulation of heterogeneous gas-solid flows in CFB risers:EMMS-based sub-grid scale model with a revised cluster description[J].Chem.Eng.Sci.,2008,63(6):1553-1571.
[31] SHI Z S,WANG W,LI J H.A bubble-based EMMS model for gas-solid bubbling fluidization[J].Chem.Eng.Sci.,2011,66(22):5541-5555.
[32] HONG K,WANG W,ZHOU Q,et al.An EMMS-based multi-fluid model (EFM) for heterogeneous gas-solid riser flows (Ⅰ):Formulation of structure-dependent conservation equations[J].Chem.Eng.Sci.,2012,75:376-389.
[33] HONG K,SHI Z S,ULLAH A,et al.Extending the bubble-based EMMS model to CFB riser simulations[J].Powder Tech.,2014,266:424-432.
[34] CHEN C,LI F,QI H Y.Modeling of the flue gas desulfurization in a CFB riser using the Eulerian approach with heterogeneous drag coefficient[J].Chem.Eng.Sci.,2012,69(1):659-668.
[35] QI H Y,LI F,XI B,et al.Modeling of drag with the Eulerian approach and EMMS theory for heterogeneous dense gas-solid two-phase flow[J].Chem.Eng.Sci.,2007,62(6):1670-1681.
[36] WANG S,ZHAO G B,LIU G D,et al.Hydrodynamics of gas-solid risers using cluster structure-dependent drag model[J].Powder Tech.,2014,254:214-227.
[37] WANG S,LIU G D,LU H L,et al.A cluster structure-dependent drag coefficient model applied to risers[J].Powder Tech.,2012,225:176-189.
[38] WANG S,LU H L,HAO Z H,et al.Modeling of reactive gas-solid flows in riser reactors using a multi-scale chemical reaction model[J].Chem.Eng.Sci.,2014,116:773-780.
[39] WANG X,JIANG F,LEI J,et al.A revised drag force model and the application for the gas-solid flow in the high-density circulating fluidized bed[J].Applied Therm.Eng.,2011,31(14/15):2254-2261.
[40] NIKOLOPOULOS A,ATSONIOS K,NIKOLOPOULOS N,et al.An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow (Ⅱ):Numerical implementation[J].Chem.Eng.Sci.,2010,65(13):4089-4099.
[41] NIKOLOPOULOS A,PAPAFOTIOU D,NIKOLOPOULOS N,et al.An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow (Ⅰ):Numerical formulation[J].Chem.Eng.Sci.,2010,65(13):4080-4088.
[42] SHAH M T,UTIKAR R P,TADE M O,et al.Simulation of gas-solid flows in riser using energy minimization multiscale model:effect of cluster diameter correlation[J].Chem.Eng.Sci.,2011,66(14):3291-3300.
[43] SHAH M T,UTIKAR R P,TADE M O,et al.Hydrodynamics of an FCC riser using energy minimization multiscale drag model[J].Chem.Eng.J.,2011,168(2):812-821.
[44] LU B,WANG W,LI J.Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J].Chem.Eng.Sci.,2009,64(15):3437-3447.
[45] SAKAI M,KOSHIZUKA S.Large-scale discrete element modeling in pneumatic conveying[J].Chem.Eng.Sci.,2009,64(3):533-539.
[46] ANDREWS M J,O'ROURKE P J.The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J].Inter.J.Multiphase Flow,1996,22(2):379-402.
[47] SAKANO M,YASO T,NAKANISHI H.Numerical simulation of two-dimensional fluidized bed using discrete element method with imaginary sphere model[J].Japanese J.Multiphase Flow,2000,14(1):66-73.
[48] HILTON J E,CLEARY P W.Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds[J].Applied Math.Modelling,2014,38:4197-4214.
[49] LI F,SONG F,BENYAHIA S,et al.MP-PIC simulation of CFB riser with EMMS-based drag model[J].Chem.Eng.Sci.,2012,82:104-113.
[50] LU L,XU J,GE W,et al.EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J].Chem.Eng.Sci.,2014,120:67-87.
[51] CHANG A F,PASHIKANTI K,LIU Y A.Predictive modeling of the fluid catalytic cracking (FCC) process[M]//Refinery Engineering.Wiley-VCH Verlag GmbH&Co.KGaA,2012:145-251.
[52] ARIS R.Prolegomena to the rational analysis of system of chemical reactions[J].Archive for Rational Mechanics and Analysis,1965,19(2):81-99.
[53] WEI J,KUO J C W.Lumping analysis in monomolecular reaction systems.Analysis of the reactly lumpable system[J].Ind.Eng.Chem.Fundamentals,1969,8(1):114-133.
[54] 段良伟,薛高平,翁惠新.催化裂化集总反应动力学模型研究进展[J].化工进展,2010,29(增刊):22-27.DUAN L W,XUE G P,WENG H X.Research progress of lump kinetic model of fluid catalytic cracking[J].Chemical Industry and Engineering Progress,2010,29(supplement):22-27.
[55] 吴飞跃.FDFCC集总反应动力学模型的研究[D].上海:华东理工大学,2008.WU F Y.Study on lumped kinetic model for FDFCC[D].Shanghai:East China University of Science and Technology,2008.
[56] WEEKMAN V W J,NACE D M.Kinetics of catalytic cracking selectivity in fixed,moving,and fluid-bed reactors[J].AIChE J.,1970,16(3):397-404.
[57] JACOB S M,GROSS B,VOLTZ S E,et al.A lumping and reaction scheme for catalytic cracking[J].AIChE J.,1976,22(4):701-713.
[58] 任杰,翁惠新,刘馥英.催化裂化反应八集总动力学[J].石油学报(石油加工),1994,10(1):1-7.REN J,WENG H X,LIU F Y.Investigation of the lumped kinetic model for catalytic cracking reaction[J].Acta Petrolei Sinica (Petroleum Processing Section),1994,10(1):1-7.
[59] BOLLAS G M,LAPPAS A A,IATRIDIS D K.Five-lump kinetic model with selective catalyst deactivation for the prediction of the product selectivity in the fluid catalytic cracking process[J].Catalysis Today,2007,27(127):31-43.
[60] NEVICATO D,PITAULT I,FORISSIER M,et al.The activity decay of cracking catalysts:chemical and structural deactivation by coke[J].Catalyst Deactivation,1994,88:249-256.
[61] 熊凯,卢春喜.催化裂化(裂解)集总反应动力学模型研究进展[J].石油学报(石油加工),2015,31(2):293-306.XIONG K,LU C X.Research progresses of lump kinetic model of FCC and catalytic pyrolysis[J].Acta Petrolei Sinica (Petroleum Processing Section),2015,31(2):293-306.
[62] 张旭,郭锦标,周祥,等.分子水平动力学模型在催化裂化反应中的应用[J].化工进展,2012,31:2678-2685.ZHANG X,GUO J B,ZHOU X,et al.Application of molecular level kinetic modeling to catalytic cracking reaction[J].Chemical Industry and Engineering Progress,2012,31:2678-2685.
[63] BALTANAS M A,VAN R K K,FROMENT G F,et al.Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites (Ⅰ):Rate parameters for hydroisomerization[J].Ind.Eng.Chem.Res.,1989,28(7):899-910.
[64] QUANN R J,JAFFE S B.Structure-oriented lumping:describing the chemistry of complex hydrocarbon mixtures[J].Ind.Eng.Chem.Res.,1992,31(11):2483-2497.
[65] DEWACHTERE N V,SANTAELLA F,FROMENT G.F.Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil[J].Chem.Eng.Sci.,1999,54(15/16):3653-3660.
[66] QUINTANA-SOLÓRZANO R,THYBAUT J W,GALTIER P,et al.Simulation of an industrial riser for catalytic cracking in the presence of coking using single-event micro kinetics[J].Catalysis Today,2010,150(3/4):319-331.
[67] WU C N,CHENG Y,DING Y L,et al.CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process[J].Chem.Eng.Sci.,2010,65(1):542-549.
[68] GAO J S,XU C M,LIN S X,et al.Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J].AIChE J.,1999,45(5):1095-1113.
[69] GAO J S,XU C M,LIN S X,et al.Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors[J].AIChE J.,2001,47(3):677-692.
[70] LAN X Y,XU C M,WANG G,et al.CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors[J].Chem.Eng.Sci.,2009,64(17):3847-3858.
[71] ZHENG Y,WAN X T,QIAN Z,et al.Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-ε-kp-εp-Θ two-fluid model[J].Chem.Eng.Sci.,2001,56(24):6813-6822.
[72] CHANG J,CAI W,ZHANG K,et al.Computational investigation of the hydrodynamics,heat transfer and kinetic reaction in an FCC gasoline riser[J].Chem.Eng.Sci.,2014,111:170-179.
[73] CHANG J,MENG F D,WANG L Y,et al.CFD investigation of hydrodynamics,heat transfer and cracking reaction in a heavy oil riser with bottom airlift loop mixer[J].Chem.Eng.Sci.,2012,78:128-143.
[74] TANG G W.Numerical simulation of industrial fluid catalytic cracking regenerator and riser[D].Purdue University,2013.
[75] LOPES G C,ROSA L M,MORI M,et al.Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions[J].Com.Chem.Eng.,2011,35(11):2159-2168.
[76] GAN J Q,ZHAO H,BERROUK A S,et al.Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multiregime gas-solid riser reactor[J].Ind.Eng.Chem.Res.,2011,50(20):11511-11520.
[77] BENYAHIA S,ORTIZ A G,PAREDES J I P.Numerical analysis of a reacting gas/solid flow in the riser section of an industrial fluid catalytic cracking unit[J].Inter.J.Chem.Reactor Eng.,2003,1:A41.
[78] BERRY T A,MCKEEN T R,PUGSLEY T S,et al.Two-dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit[J].Ind.Eng.Chem.Res.,2004,43(18):5571-5581.
[79] YANG B L,ZHOU X W,YANG X H,et al.Multi-scale study on the secondary reactions of fluid catalytic cracking gasoline[J].AIChE J.,2009,55(8):2138-2149.
[80] LI J H,KWAUK M.The dynamics of fast fluidization[M]//Fluidization.Plenum Press,1980.
[81] 程从礼,李静海,张忠东,等.气固垂直并流向上两相流流体动力学模型[J].化工学报,2001,52(8):684-689.CHENG C L,LI J H,ZHANG Z D,et al.Fluid dynamic model of concurrent-up gas-solid two-phase flow[J].Journal of Chemical Industry and Engineering (China),2001,52(8):684-689.
[82] NAYAK S V,JOSHI S L,RANADE V V.Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J].Chem.Eng.Sci.,2005,60(22):6049-6066.
[83] PATEL R,HE P F,ZHANG B,et al.Transport of interacting and evaporating liquid sprays in a gas-solid riser reactor[J].Chem.Eng.Sci.,2013,100:433-444.
[84] PATEL R,WANG D,ZHU C,et al.Effect of injection zone cracking on fluid catalytic cracking[J].AIChE J.,2013,59(4):1226-1235.
[85] BEHJAT Y,SHAHHOSSEINI S,MARVAST M A.CFD analysis of hydrodynamic,heat transfer and reaction of three phase riser reactor[J].Chem.Eng.Res.Des.,2011,89(7):978-989.
[86] NGUYEN T T B,MITRA S,PAREEK V,et al.Comparison of vaporization models for feed droplet in fluid catalytic cracking risers[J].Chem.Eng.Res.Des.,2015,101:82-97.
[87] LI J,LUO Z H,LAN X Y,et al.Numerical simulation of the turbulent gas-solid flow and reaction in a polydisperse FCC riser reactor[J].Powder Tech.,2013,237:569-580.
[88] CHEN G Q,LUO Z H.New insights into intraparticle transfer,particle kinetics,and gas-solid two-phase flow in polydisperse fluid catalytic cracking riser reactors under reaction conditions using multi-scale modeling[J].Chem.Eng.Sci.,2014,109:38-52.
[89] DU Y P,ZHAO H,MA A,et al.Equivalent reactor network model for the modeling of fluid catalytic cracking riser reactor[J].Ind.Eng.Chem.Res.,2015,54(35):8732-8742.
[90] HE P F,ZHU C,HO T C.A two-zone model for fluid catalytic cracking riser with multiple feed injectors[J].AIChE J.,2015,61(2):610-619.
[1] 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245.
[2] 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255.
[3] 李明宴, 李进龙, 彭昌军, 刘洪来. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053.
[4] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[5] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[6] 王瑞, 任瑛, 陈卫, 韩永生. 冰水界面动态结构的分子动力学模拟研究[J]. 化工学报, 2022, 73(3): 1315-1323.
[7] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[8] 兰文杰, 胡晓洁, 蔡迪宗. 界面探针法测量液滴与固体壁面间相互作用力[J]. 化工学报, 2022, 73(3): 1119-1126.
[9] 徐祖良, 汪宇昊, 赵辉, 周骛, 蔡小舒, 刘海峰. 同轴四通道喷嘴气流式雾化特性影响因素研究[J]. 化工学报, 2022, 73(2): 604-611.
[10] 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633.
[11] 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
[12] 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800.
[13] 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758.
[14] 马文峻, 陈卓, 凌斯达, 张经纬, 徐建鸿. 3D打印微流控通道快速可控制备核壳微纤维[J]. 化工学报, 2022, 73(1): 434-440.
[15] 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马利,张阳,杨基础. 反应与催化精馏耦合提纯乳酸新工艺的研究[J]. CIESC Journal, 2005, 13(1): 24 -31 .
[2] 钟理, 罗京莉, K.Chuang. 中温H2S-空气燃料电池阴极催化剂的研究[J]. CIESC Journal, 2007, 15(3): 305 -308 .
[3] 姬忠礼, 彭书, 谭立村. 陶瓷过滤器脉冲反吹系统的流场的数值模拟[J]. CIESC Journal, 2003, 11(6): 626 -632 .
[4] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[5] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[6] 夏炳乐, 刘清亮, 李敏莉, 徐小龙, 施春华, 解永树. 烟草过氧化物酶(TOPI)的分离与纯化的研究[J]. CIESC Journal, 2003, 11(3): 341 -343 .
[7] 陈启石, 冯霄. 考虑环境影响最小化的反应过程的开发[J]. CIESC Journal, 2003, 11(5): 611 -615 .
[8] 费维扬, 孙兰义, 郭庆丰. 新一代的乱堆填料——梅花扁环[J]. CIESC Journal, 2002, 10(6): 631 -634 .
[9] 未作君, 徐世民, 元英进, 许松林. 采用CFD模拟装备标准透平桨或45°-斜向上桨搅拌反应器内部流体力学特性[J]. CIESC Journal, 2003, 11(4): 467 -471 .
[10] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .