化工学报 ›› 2016, Vol. 67 ›› Issue (8): 3121-3132.DOI: 10.11949/j.issn.0438-1157.20160404
鲁波娜, 张景远, 王维, 李静海
收稿日期:
2016-03-31
修回日期:
2016-04-27
出版日期:
2016-08-05
发布日期:
2016-08-05
通讯作者:
鲁波娜
基金资助:
国家重点基础研究发展计划项目(2012CB215003);国家自然科学基金项目(21576263);中国科学院青年创新促进会。
LU Bona, ZHANG Jingyuan, WANG Wei, LI Jinghai
Received:
2016-03-31
Revised:
2016-04-27
Online:
2016-08-05
Published:
2016-08-05
Supported by:
supported by the National Basic Research Program of China (2012CB215003), the National Natural Science Foundation of China (21576263) and the Youth Innovation Promotion Association CAS.
摘要:
流化催化裂化(fluid catalytic cracking,FCC)工艺是石油炼制中的重要转化工艺,用于生产汽油、柴油、轻质烯烃等重要化工原料。FCC反应过程的CFD模拟有助于理解FCC反应器中流动和反应行为,辅助设计和优化FCC工艺设备,最终指导工业生产和实现虚拟调控和放大。从与FCC反应模拟相关的多相流动模型、反应动力学模型以及流动与反应之间耦合等方面做了回顾和总结。在流动与反应耦合研究方面,从湍流模型的使用、流动结构的影响、精细化模型的发展以及原油汽化模型的重要性这4个角度做了分析比较及总结。基于已有的研究工作,认为虽然很多研究表明CFD模拟能较好地揭示工业FCC提升管反应器内的流动和反应行为,但缺乏采用同一方法实现从小试到工业反应器模拟放大的实例,从侧面反映了当前的FCC理论模型和模拟技术还远未达到可以代替实验的水平。展望未来的FCC反应模拟,建议从模型精细度和计算效率上加强研发,并在此两方面寻求平衡,最终实现虚拟调控。
中图分类号:
鲁波娜, 张景远, 王维, 李静海. FCC反应过程的CFD模拟进展[J]. 化工学报, 2016, 67(8): 3121-3132.
LU Bona, ZHANG Jingyuan, WANG Wei, LI Jinghai. CFD modeling of FCC reaction process: a review[J]. CIESC Journal, 2016, 67(8): 3121-3132.
[1] | DUTTA A,CONSTALES D,HEYNDERICKX G J.Applying the direct quadrature method of moments to improve multiphase FCC riser reactor simulation[J].Chem.Eng.Sci.,2012,83:93-109. |
[2] | ZHU C,JUN Y,PATEL R,et al.Interactions of flow and reaction in fluid catalytic cracking risers[J].AIChE Journal,2011,57(11):3122-3131. |
[3] | 许友好,汪燮卿.催化裂化过程反应化学的进展[J].中国工程科学,2007,9(8):6-14.XU Y H,WANG X Q.Advance in FCC process reaction chemistry[J].Engineering Sciences,2007,9(8):6-14 |
[4] | 陈俊武.催化裂化工艺与工程[M].2版.北京:中国石油出版社,2005.CHEN J W.Catalytic Cracking Process and Engineering[M].2nd ed.Beijing:China Petrochemical Press,2005. |
[5] | CHEN Y M.Recent advances in FCC technology[J].Powder Tech.,2006,163:2-8. |
[6] | 许友好,张久顺,龙军.生产清洁汽油组分的催化裂化新工艺MIP[J].石油炼制与化工,2001,32(8):1-5.XU Y H,ZHANG J S,LONG J.A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J].Petroleum Processing and Petrochemicals,2001,32(8):1-5. |
[7] | 许友好,张久顺,龙军,等.多产异构烷烃的催化裂化工艺技术开发与工业应用[J].中国工程科学,2003,5(5):55-58.XU Y H,ZHANG J S,LONG J,et al.Development and commerical application of FCC process for maximizing iso-paraffins (MIP) in cracked naphtha[J].Engineering Sciences,2003,5(5):55-58. |
[8] | 山红红,李春义,钮根林,等.流化催化裂化技术研究进展[J].石油大学学报(自然科学版),2005,29(6):135-150.SHAN H H,LI C Y,NIU G L,et al.Research progress in fluid catalytic cracking technology[J].Journal of the University of Petroleum,China,2005,29(6):135-150. |
[9] | 杨朝合,山红红,张建芳,等.传统催化裂化提升管反应器的弊端与两段提升管催化裂化[J].中国石油大学学报(自然科学版),2007,31:127-138.YANG C H,SHAN H H,ZHANG J F,et al.Shortcoming of conversional RFCC reactor and advantage of TSRFCC technology[J].Journal of China University of Petroleum,2007,31:127-138. |
[10] | LI J H,KWAUK M.Paticle-Fluid Two-Phase Flow:the Energy-Minimization Multi-Scale Method[M].Beijing:Metallurgical Industry Press,1994. |
[11] | WANG X H,GAO S Q,XU Y H,et al.Gas-solids flow patterns in a novel dual-loop FCC riser[J].Powder Tech.,2005,152:90-99. |
[12] | LU B N,WANG W,LI J H,et al.Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J].Chem.Eng.Sci.,2007,62(18/19/20):5487-5494. |
[13] | 鲁波娜,程从礼,鲁维民,等.基于多尺度模型的MIP提升管反应历程数值模拟[J].化工学报,2013,64(6):1983-1992.LU B N,CHENG C L,LU W M,et al.Numerical simulation of reaction process in MIP riser based on multi-scale model[J].CIESC Journal,2013,64(6):1983-1992. |
[14] | PINHEIRO C I C,FERNANDES J L,DOMINGUES L,et al.Fluid catalytic cracking (FCC) process modeling,simulation,and control[J].Ind.Eng.Chem.Res.,2012,51(1):1-29. |
[15] | GUPTA R K,KUMAR V,SRIVASTAVA V K.Modeling of fluid catalytic cracking riser reactor:a review[J].Inter.J.Chem.Reactor Eng.,2010,8:R6. |
[16] | 杨朝合,杜玉朋,赵辉.催化裂化提升管反应器流动反应耦合模型研究进展[J].化工进展,2015,34(3):608-616.YANG C H,DU Y P,ZHAO H.Evolvement of flow-reaction models for fluid catalytic cracking riser reactors[J].Chemical Industry and Engineering Progress,2015,34(3):608-616. |
[17] | GIDASPOW D.Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions[M].Boston:Academic Press,1994. |
[18] | ANSYS Inc.ANSYS Fluent Theory Guide (release 15.0)[EB/OL].http://www.ansys.com,2013. |
[19] | IGCI Y,PANNALA S,BENYAHIA S,et al.Validation studies on filtered model equations for gas-particle flows in risers[J].Ind.Eng.Chem.Res.,2012,51:2094-2103. |
[20] | OZARKAR S S,YAN X,WANG S,et al.Validation of filtered two-fluid models for gas-particle flows against experimetal data from bubbling fluidized bed[J].Powder Tech.,2015,284:159-169. |
[21] | HOLLOWAY W,SUNDARESAN S.Filtered models for reactng gas-particle flows[J].Chem.Eng.Sci.,2012,82:132-143. |
[22] | IGCI Y,ANDREWS Ⅳ A T,SUNDARESAN S,et al.Filtered two-fluid models for fluidized gas-particle suspensions[J].AIChE J.,2008,54(6):1431-1448. |
[23] | AGRAWAL K,LOEZOS P N,SYAMLAL M,et al.The role of mesoscale structures in rapid gas-solid flows[J].J.Fluid Mech.,2001,445:151-185. |
[24] | MILIOLI C C,MILIOLI F E,HOLLOWAY W,et al.Filtered two-fluid models of fluidized gas-particle flows:new constitutive relations[J].AIChE J.,2013,59(9):3265-3275. |
[25] | ANDREWS Ⅳ A T.Filtered models for gas-particle flow hydrodynamics[D].Princeton University,2007. |
[26] | YANG N,WANG W,GE W,et al.CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J].Chem.Eng.J.,2003,96:71-80. |
[27] | YANG N,WANG W,GE W,et al.Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J].Ind.Eng.Chem.Res.,2004,43(18):5548-5561. |
[28] | WANG W,LI J H.Simulation of gas-solid two-phase flow by a multi-scale CFD approach-extension of the EMMS model to the sub-grid level[J].Chem.Eng.Sci.,2007,62(1/2):208-231. |
[29] | LU B N,WANG W,LI J H.Eulerian simulation of gas-solid flows with particles of Geldart groups A,B and D using EMMS-based meso-scale model[J].Chem.Eng.Sci.,2011,66(20):4624-4635. |
[30] | WANG J W,GE W,LI J H.Eulerian simulation of heterogeneous gas-solid flows in CFB risers:EMMS-based sub-grid scale model with a revised cluster description[J].Chem.Eng.Sci.,2008,63(6):1553-1571. |
[31] | SHI Z S,WANG W,LI J H.A bubble-based EMMS model for gas-solid bubbling fluidization[J].Chem.Eng.Sci.,2011,66(22):5541-5555. |
[32] | HONG K,WANG W,ZHOU Q,et al.An EMMS-based multi-fluid model (EFM) for heterogeneous gas-solid riser flows (Ⅰ):Formulation of structure-dependent conservation equations[J].Chem.Eng.Sci.,2012,75:376-389. |
[33] | HONG K,SHI Z S,ULLAH A,et al.Extending the bubble-based EMMS model to CFB riser simulations[J].Powder Tech.,2014,266:424-432. |
[34] | CHEN C,LI F,QI H Y.Modeling of the flue gas desulfurization in a CFB riser using the Eulerian approach with heterogeneous drag coefficient[J].Chem.Eng.Sci.,2012,69(1):659-668. |
[35] | QI H Y,LI F,XI B,et al.Modeling of drag with the Eulerian approach and EMMS theory for heterogeneous dense gas-solid two-phase flow[J].Chem.Eng.Sci.,2007,62(6):1670-1681. |
[36] | WANG S,ZHAO G B,LIU G D,et al.Hydrodynamics of gas-solid risers using cluster structure-dependent drag model[J].Powder Tech.,2014,254:214-227. |
[37] | WANG S,LIU G D,LU H L,et al.A cluster structure-dependent drag coefficient model applied to risers[J].Powder Tech.,2012,225:176-189. |
[38] | WANG S,LU H L,HAO Z H,et al.Modeling of reactive gas-solid flows in riser reactors using a multi-scale chemical reaction model[J].Chem.Eng.Sci.,2014,116:773-780. |
[39] | WANG X,JIANG F,LEI J,et al.A revised drag force model and the application for the gas-solid flow in the high-density circulating fluidized bed[J].Applied Therm.Eng.,2011,31(14/15):2254-2261. |
[40] | NIKOLOPOULOS A,ATSONIOS K,NIKOLOPOULOS N,et al.An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow (Ⅱ):Numerical implementation[J].Chem.Eng.Sci.,2010,65(13):4089-4099. |
[41] | NIKOLOPOULOS A,PAPAFOTIOU D,NIKOLOPOULOS N,et al.An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow (Ⅰ):Numerical formulation[J].Chem.Eng.Sci.,2010,65(13):4080-4088. |
[42] | SHAH M T,UTIKAR R P,TADE M O,et al.Simulation of gas-solid flows in riser using energy minimization multiscale model:effect of cluster diameter correlation[J].Chem.Eng.Sci.,2011,66(14):3291-3300. |
[43] | SHAH M T,UTIKAR R P,TADE M O,et al.Hydrodynamics of an FCC riser using energy minimization multiscale drag model[J].Chem.Eng.J.,2011,168(2):812-821. |
[44] | LU B,WANG W,LI J.Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J].Chem.Eng.Sci.,2009,64(15):3437-3447. |
[45] | SAKAI M,KOSHIZUKA S.Large-scale discrete element modeling in pneumatic conveying[J].Chem.Eng.Sci.,2009,64(3):533-539. |
[46] | ANDREWS M J,O'ROURKE P J.The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J].Inter.J.Multiphase Flow,1996,22(2):379-402. |
[47] | SAKANO M,YASO T,NAKANISHI H.Numerical simulation of two-dimensional fluidized bed using discrete element method with imaginary sphere model[J].Japanese J.Multiphase Flow,2000,14(1):66-73. |
[48] | HILTON J E,CLEARY P W.Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds[J].Applied Math.Modelling,2014,38:4197-4214. |
[49] | LI F,SONG F,BENYAHIA S,et al.MP-PIC simulation of CFB riser with EMMS-based drag model[J].Chem.Eng.Sci.,2012,82:104-113. |
[50] | LU L,XU J,GE W,et al.EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J].Chem.Eng.Sci.,2014,120:67-87. |
[51] | CHANG A F,PASHIKANTI K,LIU Y A.Predictive modeling of the fluid catalytic cracking (FCC) process[M]//Refinery Engineering.Wiley-VCH Verlag GmbH&Co.KGaA,2012:145-251. |
[52] | ARIS R.Prolegomena to the rational analysis of system of chemical reactions[J].Archive for Rational Mechanics and Analysis,1965,19(2):81-99. |
[53] | WEI J,KUO J C W.Lumping analysis in monomolecular reaction systems.Analysis of the reactly lumpable system[J].Ind.Eng.Chem.Fundamentals,1969,8(1):114-133. |
[54] | 段良伟,薛高平,翁惠新.催化裂化集总反应动力学模型研究进展[J].化工进展,2010,29(增刊):22-27.DUAN L W,XUE G P,WENG H X.Research progress of lump kinetic model of fluid catalytic cracking[J].Chemical Industry and Engineering Progress,2010,29(supplement):22-27. |
[55] | 吴飞跃.FDFCC集总反应动力学模型的研究[D].上海:华东理工大学,2008.WU F Y.Study on lumped kinetic model for FDFCC[D].Shanghai:East China University of Science and Technology,2008. |
[56] | WEEKMAN V W J,NACE D M.Kinetics of catalytic cracking selectivity in fixed,moving,and fluid-bed reactors[J].AIChE J.,1970,16(3):397-404. |
[57] | JACOB S M,GROSS B,VOLTZ S E,et al.A lumping and reaction scheme for catalytic cracking[J].AIChE J.,1976,22(4):701-713. |
[58] | 任杰,翁惠新,刘馥英.催化裂化反应八集总动力学[J].石油学报(石油加工),1994,10(1):1-7.REN J,WENG H X,LIU F Y.Investigation of the lumped kinetic model for catalytic cracking reaction[J].Acta Petrolei Sinica (Petroleum Processing Section),1994,10(1):1-7. |
[59] | BOLLAS G M,LAPPAS A A,IATRIDIS D K.Five-lump kinetic model with selective catalyst deactivation for the prediction of the product selectivity in the fluid catalytic cracking process[J].Catalysis Today,2007,27(127):31-43. |
[60] | NEVICATO D,PITAULT I,FORISSIER M,et al.The activity decay of cracking catalysts:chemical and structural deactivation by coke[J].Catalyst Deactivation,1994,88:249-256. |
[61] | 熊凯,卢春喜.催化裂化(裂解)集总反应动力学模型研究进展[J].石油学报(石油加工),2015,31(2):293-306.XIONG K,LU C X.Research progresses of lump kinetic model of FCC and catalytic pyrolysis[J].Acta Petrolei Sinica (Petroleum Processing Section),2015,31(2):293-306. |
[62] | 张旭,郭锦标,周祥,等.分子水平动力学模型在催化裂化反应中的应用[J].化工进展,2012,31:2678-2685.ZHANG X,GUO J B,ZHOU X,et al.Application of molecular level kinetic modeling to catalytic cracking reaction[J].Chemical Industry and Engineering Progress,2012,31:2678-2685. |
[63] | BALTANAS M A,VAN R K K,FROMENT G F,et al.Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites (Ⅰ):Rate parameters for hydroisomerization[J].Ind.Eng.Chem.Res.,1989,28(7):899-910. |
[64] | QUANN R J,JAFFE S B.Structure-oriented lumping:describing the chemistry of complex hydrocarbon mixtures[J].Ind.Eng.Chem.Res.,1992,31(11):2483-2497. |
[65] | DEWACHTERE N V,SANTAELLA F,FROMENT G.F.Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil[J].Chem.Eng.Sci.,1999,54(15/16):3653-3660. |
[66] | QUINTANA-SOLÓRZANO R,THYBAUT J W,GALTIER P,et al.Simulation of an industrial riser for catalytic cracking in the presence of coking using single-event micro kinetics[J].Catalysis Today,2010,150(3/4):319-331. |
[67] | WU C N,CHENG Y,DING Y L,et al.CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process[J].Chem.Eng.Sci.,2010,65(1):542-549. |
[68] | GAO J S,XU C M,LIN S X,et al.Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J].AIChE J.,1999,45(5):1095-1113. |
[69] | GAO J S,XU C M,LIN S X,et al.Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors[J].AIChE J.,2001,47(3):677-692. |
[70] | LAN X Y,XU C M,WANG G,et al.CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors[J].Chem.Eng.Sci.,2009,64(17):3847-3858. |
[71] | ZHENG Y,WAN X T,QIAN Z,et al.Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-ε-kp-εp-Θ two-fluid model[J].Chem.Eng.Sci.,2001,56(24):6813-6822. |
[72] | CHANG J,CAI W,ZHANG K,et al.Computational investigation of the hydrodynamics,heat transfer and kinetic reaction in an FCC gasoline riser[J].Chem.Eng.Sci.,2014,111:170-179. |
[73] | CHANG J,MENG F D,WANG L Y,et al.CFD investigation of hydrodynamics,heat transfer and cracking reaction in a heavy oil riser with bottom airlift loop mixer[J].Chem.Eng.Sci.,2012,78:128-143. |
[74] | TANG G W.Numerical simulation of industrial fluid catalytic cracking regenerator and riser[D].Purdue University,2013. |
[75] | LOPES G C,ROSA L M,MORI M,et al.Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions[J].Com.Chem.Eng.,2011,35(11):2159-2168. |
[76] | GAN J Q,ZHAO H,BERROUK A S,et al.Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multiregime gas-solid riser reactor[J].Ind.Eng.Chem.Res.,2011,50(20):11511-11520. |
[77] | BENYAHIA S,ORTIZ A G,PAREDES J I P.Numerical analysis of a reacting gas/solid flow in the riser section of an industrial fluid catalytic cracking unit[J].Inter.J.Chem.Reactor Eng.,2003,1:A41. |
[78] | BERRY T A,MCKEEN T R,PUGSLEY T S,et al.Two-dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit[J].Ind.Eng.Chem.Res.,2004,43(18):5571-5581. |
[79] | YANG B L,ZHOU X W,YANG X H,et al.Multi-scale study on the secondary reactions of fluid catalytic cracking gasoline[J].AIChE J.,2009,55(8):2138-2149. |
[80] | LI J H,KWAUK M.The dynamics of fast fluidization[M]//Fluidization.Plenum Press,1980. |
[81] | 程从礼,李静海,张忠东,等.气固垂直并流向上两相流流体动力学模型[J].化工学报,2001,52(8):684-689.CHENG C L,LI J H,ZHANG Z D,et al.Fluid dynamic model of concurrent-up gas-solid two-phase flow[J].Journal of Chemical Industry and Engineering (China),2001,52(8):684-689. |
[82] | NAYAK S V,JOSHI S L,RANADE V V.Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J].Chem.Eng.Sci.,2005,60(22):6049-6066. |
[83] | PATEL R,HE P F,ZHANG B,et al.Transport of interacting and evaporating liquid sprays in a gas-solid riser reactor[J].Chem.Eng.Sci.,2013,100:433-444. |
[84] | PATEL R,WANG D,ZHU C,et al.Effect of injection zone cracking on fluid catalytic cracking[J].AIChE J.,2013,59(4):1226-1235. |
[85] | BEHJAT Y,SHAHHOSSEINI S,MARVAST M A.CFD analysis of hydrodynamic,heat transfer and reaction of three phase riser reactor[J].Chem.Eng.Res.Des.,2011,89(7):978-989. |
[86] | NGUYEN T T B,MITRA S,PAREEK V,et al.Comparison of vaporization models for feed droplet in fluid catalytic cracking risers[J].Chem.Eng.Res.Des.,2015,101:82-97. |
[87] | LI J,LUO Z H,LAN X Y,et al.Numerical simulation of the turbulent gas-solid flow and reaction in a polydisperse FCC riser reactor[J].Powder Tech.,2013,237:569-580. |
[88] | CHEN G Q,LUO Z H.New insights into intraparticle transfer,particle kinetics,and gas-solid two-phase flow in polydisperse fluid catalytic cracking riser reactors under reaction conditions using multi-scale modeling[J].Chem.Eng.Sci.,2014,109:38-52. |
[89] | DU Y P,ZHAO H,MA A,et al.Equivalent reactor network model for the modeling of fluid catalytic cracking riser reactor[J].Ind.Eng.Chem.Res.,2015,54(35):8732-8742. |
[90] | HE P F,ZHU C,HO T C.A two-zone model for fluid catalytic cracking riser with multiple feed injectors[J].AIChE J.,2015,61(2):610-619. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[14] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[15] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||