化工学报 ›› 2017, Vol. 68 ›› Issue (1): 8-22.DOI: 10.11949/j.issn.0438-1157.20161279
钱明, 张留伟, 王静云
收稿日期:
2016-09-12
修回日期:
2016-10-19
出版日期:
2017-01-05
发布日期:
2017-01-05
通讯作者:
王静云
基金资助:
国家自然科学基金项目(21376039)。
QIAN Ming, ZHANG Liuwei, WANG Jingyun
Received:
2016-09-12
Revised:
2016-10-19
Online:
2017-01-05
Published:
2017-01-05
Contact:
10.11949/j.issn.0438-1157.20161279
Supported by:
supported by the National Natural Science Foundation of China (21376039).
摘要:
酶在维持生物体内稳态与生命活动的正常运行方面发挥着举足轻重的作用。某些特定酶含量及活性的异常与人类重大疾病的发生与发展密切相关。因此,生物体内特定酶的实时原位检测及可视化成像具有重要的意义。化学荧光探针具有选择性好、灵敏度高及高时空分辨率可视化成像等优点,近年来研究者设计合成了大量的可用于生物体系内酶识别与可视化成像的荧光探针。目前识别酶的荧光探针主要有两类:(1)基于酶对荧光探针分子中酶抑制剂基团的识别引起探针荧光信号的变化;(2)基于酶对荧光探针特异性催化反应来实现识别前后荧光信号的激活,称为反应激活型酶荧光探针。对反应激活型酶荧光探针的设计策略及4种重大疾病相关的生物标志酶(单胺氧化酶、β-半乳糖苷酶、硝基还原酶、γ-谷氨酰转肽酶)的识别可视化荧光探针研究进展进行了综述,对未来酶识别荧光探针的研究方向进行了展望。
中图分类号:
钱明, 张留伟, 王静云. 反应激活型酶荧光探针的研究进展[J]. 化工学报, 2017, 68(1): 8-22.
QIAN Ming, ZHANG Liuwei, WANG Jingyun. Progress in research of reaction-activated fluorescent probe for enzymes[J]. CIESC Journal, 2017, 68(1): 8-22.
[1] | WIJDEVEN R H, NEEFJES J, OVAA H. How chemistry supports cell biology:the chemical toolbox at your service[J]. Trends in Cell Biology, 2014, 24(12):751-760. |
[2] | PENG L, GAO M, CAI X L, et al. A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells[J]. Journal of Materials Chemistry B, 2015, 3:9168-9172. |
[3] | XUE C, LEI Y J, ZHANG S C, et al. A cyanine-derived "turn-on" fluorescent probe for imaging nitroreductase in hypoxic tumor cells[J]. Analytical Methods, 2015, 7:10125-10128. |
[4] | YUAN J, XU Y Q, ZHOU N N, et al. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging[J]. RSC Advances, 2014, 4:56207-56210. |
[5] | XU J, SUN S B, LI Q, et al. A rapid response "turn-on" fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging[J]. Analyst, 2015, 140:574-581. |
[6] | YOUDIM M B H, EDMONDSON D, TIPTON K F. The therapeutic potential of monoamine oxidase inhibitors[J]. Nature Reviews Neuroscience, 2006, 7(4):295-309. |
[7] | SONG Y J, WEI W L, QU X G. Colorimetric biosensing using smart materials[J]. Advance Materials, 2011, 23(37):4215-4236. |
[8] | WANG J S, WU L, REN J S, et al. Visualizing human telomerase activity with primer-modified Au nanoparticles[J]. Small, 2012, 8(2):259-264. |
[9] | CHIKKAVEERAIAH B V, BHIRDE A A, MORGAN N Y, et al. Electrochemical immunosensors for detection of cancer protein biomarkers[J]. ACS Nano, 2012, 6(8):6546-6561. |
[10] | ALBERTI D, VAN'T ERVE M, STEFANIA R, et al. A quantitative relaxometric version of the ELISA test for the measurement of cell surface biomarkers[J]. Angewandte Chemistry, 2014, 126:3556-3559. |
[11] | TERAI T, NAGANO T. Small-molecule fluorophores and fluorescent probes for bioimaging[J]. Pflugers Archiv:European Journal of Physiology, 2013, 465(3):347-359. |
[12] | 姜娜, 杨洪宝, 樊江莉, 等. 线粒体荧光探针最新研究进展[J]. 化工学报, 2016, 67(1):176-190. JIANG N, YANG H B, FAN J L, et al. Progress in research of mitochondrial fluorescence probes[J]. CIESC Journal, 2016, 67(1):176-190. |
[13] | 张世玲, 彭孝军. 氟离子荧光探针的研究进展[J]. 化工学报, 2016, 67(1):191-201. ZHANG S L, PENG X J. Research progress on fluorescent probes for fluoride ions[J]. CIESC Journal, 2016, 67(1):191-201. |
[14] | WANG B H, FAN J L, WANG X W, et al. Nile blue based infrared fluorescent probe imaging tumors that over-express cyclooxygenase-2[J]. Chemical Communications, 2015, 51:792-795. |
[15] | ZHANG H, FAN J L, WANG J Y, et al. Fluorescence discrimination of cancer from inflammation by molecular response to COX-2 enzymes[J]. Journal of the American Chemical Society, 2013, 135(46):17469-17475. |
[16] | ZHANG H, FAN J L, WANG J Y, et al. An off-on COX-2-specific fluorescent probe:targeting the Golgi apparatus of cancer cells[J]. Journal of the American Chemical Society, 2013, 135(31):11663-11669. |
[17] | QIAN L H, LI L, YAO S Q. Two-photon small molecule enzymatic probes[J]. Accounts of Chemical Research, 2016, 49(4):626-634. |
[18] | EDGINGTON L E, VERDOES M, BOGYO M. Functional imaging of proteases:recent advances in the design and application of substrate-based and activity-based probes[J]. Current Opinion in Chemical Biology, 2011, 15(6):798-805. |
[19] | GOMOKI G. Microtechnical demonstration of phosphatase in tissue sections[J]. Proceedings of the Society for Experimental Biology and Medicine, 1939, 42:23-26. |
[20] | ZLOKARNIK G, NEGULESCU P A, KNAPP T E, et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter[J]. Science, 1998, 279:1764-1765. |
[21] | ASANUMA D, SAKABE M, KAMIYA M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo[J]. Nature Communications, 2015, 6:6463-6469. |
[22] | LEE H W, HEO C H, SEN D, et al. Ratiometric two-photon fluorescent probe for quantitative detection of β-galactosidase activity in senescent cells[J]. Analytical Chemistry, 2014, 86(20):10001-10005. |
[23] | GU K Z, XU Y S, LI H, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe[J]. Journal of American Chemical Society, 2016, 138(16):5334-5340. |
[24] | CUI L, ZHONG Y, ZHU W P, et al. A new prodrug-derived ratiometric fluorescent probe for hypoxia high selectivity of nitroreductase and imaging in tumor cell[J]. Organic Letters, 2011, 13:928-931. |
[25] | LI L, ZHANG C W, CHEN G Y, et al. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models[J]. Nature Communications, 2014, 5:3276-3285. |
[26] | LI Y H, SUN Y, LI J C, et al. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging[J]. Journal of the American Chemical Society, 2015, 137(19):6407-6416. |
[27] | SHEN W, YU J, GE J Y, et al. Light-up probes based on fluorogens with aggregation-induced emission characteristics for monoamine oxidase-a activity study in solution and in living cells[J]. ACS Applied Materials & Interfaces, 2016, 8(1):927-935. |
[28] | URANO Y, SAKABE M, KOSAKA N, et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe[J]. Science Translational Medicine, 2011, 3(110):110-119. |
[29] | WANG F Y, ZHU Y, ZHOU L, et al. Fluorescent in situ targeting probes for rapid imaging of ovarian-cancer-specific gamma-glutamyltranspeptidase[J]. Angewandte Chemie International Edition in English, 2015, 54(25):7349-7353. |
[30] | WU X F, LI L H, SHI W, et al. Sensitive and selective ratiometric fluorescence probes for detection of intracellular endogenous monoamine oxidase A[J]. Analytical Chemistry, 2016, 88(2):1440-1446. |
[31] | XU K H, WANG F H, PAN X, et al. High selectivity imaging of nitroreductase using a near-infrared fluorescence probe in hypoxic tumor[J]. Chemical Communications, 2013, 49(25):2554-2556. |
[32] | ZHANG J, LIU H W, HU X X, et al. Efficient two-photon fluorescent probe for nitroreductase detection and hypoxia imaging in tumor cells and tissues[J]. Analytical Chemistry, 2015, 87(23):11832-11839. |
[33] | ZHANG P S, JIANG X F, NIE X Z, et al. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GGT) level in vivo[J]. Biomaterials, 2016, 80:46-56. |
[34] | KOMATSU T, URANO Y. Evaluation of enzymatic activities in living systems with small-molecular fluorescent substrate probes[J]. Analytical Sciences, 2015, 31:257-265. |
[35] | SHIH J C, CHEN K, RIDD M J. Monoamine oxidase:from genes to behavior[J]. Annual Review of Neuroscience, 1999, 22:197-217. |
[36] | CASPI A, MCCLAY J, MOFFITT T E, et al. Role of genotype in the cycle of violence in maltreated children[J]. Science, 2002, 297:851-853. |
[37] | CHEN G, YEE D J, GUBERNATOR N G, et al. Design of optical switches as metabolic indicators new fluorogenic probes for monoamine oxidases (MAO A and B)[J]. Journal of the American Chemical Society, 2005, 127:4544-4545. |
[38] | ALBERS A E, RAWLS K A, CHANG C J. Activity-based fluorescent reporters for monoamine oxidases in living cells[J]. Chemical Communications, 2007, 44:4647-4649. |
[39] | KIM D, SAMBASIVAN S, NAM H, et al. Reaction-based two-photon probes for in vitro analysis and cellular imaging of monoamine oxidase activity[J]. Chemical Communications, 2012, 48(54):6833-6835. |
[40] | LONG S B, CHEN L, XIANG Y, et al. An activity-based fluorogenic probe for sensitive and selective monoamine oxidase-B detection[J]. Chemical Communications, 2012, 48(57):7164-7166. |
[41] | LI X F, ZHANG H T, XIE Y S, et al. Fluorescent probes for detecting monoamine oxidase activity and cell imaging[J]. Organic & Biomolecular Chemistry, 2014, 12(13):2033-2036. |
[42] | SHEN W, LONG S B, YU S A, et al. Design, synthesis, and evaluation of an activity-based probe for cellular imaging of monoamine oxidases[J]. Medicinal Chemistry Research, 2011, 21(11):3858-3862. |
[43] | ZHOU W H, VALLY M P, SHULTZ J, et al. New bioluminogenic substrates for monoamine oxidase assays[J]. Journal of the American Chemical Society, 2006, 128:3122-3123. |
[44] | XIANG Y M, HE B Y, LI X F, et al. The design and synthesis of novel "turn-on" fluorescent probes to visualize monoamine oxidase-B in living cells[J]. RSC Advances, 2013, 3(15):4876-4879. |
[45] | LI X F, YU J J, ZHU Q, et al. Visualization of monoamine oxidases in living cells using "turn-on" fluorescence resonance energy transfer probes[J]. Analyst, 2014, 139:6092-6095. |
[46] | ZHANG Y X, XU Y F, TAN SH Y, et al. Rapid and sensitive fluorescent probes for monoamine oxidases B to A at low concentrations[J]. Tetrahedron Letters, 2012, 53(51):6881-6884. |
[47] | KIM H M, CHO B R. Small-molecule two-photon probes for bioimaging applications[J]. Chemical Reviews, 2015, 115(11):5014-5055. |
[48] | WANG C C, BILLETT E, BORCHERT A, et al. Monoamine oxidases in development[J]. Cellular and Molecular Life Science, 2013, 70(4):599-630. |
[49] | THOMAS J A. Optical imaging probes for biomolecules:an introductory perspective[J]. Chemical Society Reviews, 2015, 44:4494-4500. |
[50] | KIKUCHI K. Design, synthesis and biological application of chemical probes for bio-imaging[J]. Chemical Society Reviews, 2010, 39(6):2048-2053. |
[51] | ROTMAN B B, ZDERIC J A, EDELSTEIN M. Fluorogenic substrates for β-D-galactosidases and phosphatases derived from fluorescein (3, 6-dihydroxyfluoran) and its monomethyl ether[J]. Proceedings of the National Academy of Sciences, 1963, 50:1-6. |
[52] | URANO Y, KAMIYA M, KANDA K, et al. Evolution of fluorescein as a platform for finely tunable fluorescence probes[J]. Journal of the American Chemical Society, 2005, 127:4888-4894. |
[53] | KAMIYA M, KOBAYASHI H, HAMA Y, et al. An enzymatically activated fluorescence probe for targeted tumor imaging[J]. Journal of the American Chemical Society, 2007, 129:3918-3929. |
[54] | KAMIYA M, ASANUMA D, KURANAGA E, et al. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold[J]. Journal of the American Chemical Society, 2011, 133(33):12960-12963. |
[55] | HAN J Y, HAN M S, TUNG C H. A fluorogenic probe for β-galactosidase activity imaging in living cells[J]. Molecular Biosystems, 2013, 9(12):3001-3008. |
[56] | SAKABE M, ASANUMA D, KAMIYA M, et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization[J]. Journal of the American Chemical Society, 2013, 135(1):409-414. |
[57] | ZHANG X X, WU H, LI P, et al. A versatile two-photon fluorescent probe for ratiometric imaging E.coli β-galactosidase in live cells and in vivo[J]. Chemical Communications, 2016, 52(53):8283-8286. |
[58] | WILSON W R, HAY M P. Targeting hypoxia in cancer therapy[J]. Nature Reviews Cancer, 2011, 11(6):393-410. |
[59] | LI Z, LI X H, GAO X H, et al. Nitroreductase detection and hypoxic tumor cell imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one[J]. Analytical Chemistry, 2013, 85(8):3926-3932. |
[60] | SHI Y M, ZHANG S C, ZHANG X R. A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium[J]. Analyst, 2013, 138(7):1952-1955. |
[61] | ZHU D J, XUE L, LI G P, et al. A highly sensitive near-infrared ratiometric fluorescent probe for detecting nitroreductase and cellular imaging[J]. Sensors and Actuators B:Chemical, 2016, 222:419-424. |
[62] | 万琼琼, 李照, 马会民. 硝基还原酶荧光探针的研究进展[J]. 分析科学学报, 2014, 30:755-760. WAN Q Q, LI Z, MA H M. Progress in fluorescent probes for nitroreductase[J]. Journal of Analytical Science, 2014, 30:755-760. |
[63] | RICKETTS W A, HANIGAN M H. Extracellular glutathione is a source of cysteine for cells that express γ-glutamyl transpeptidase[J]. Biochemistry, 1993, 32:6302-6306. |
[64] | STEFANIUK P, CIANCIARA J, DRAPALOA W. Present and future possibilities for early diagnosis of hepatocellular carcinoma[J]. World Journal of Gastroenterology, 2010, 16(4):418-424. |
[65] | YAOD F, JIANGD R, HUANG Z W, et al. Abnormal expression of hepatoma specific γ-glutamyl transferase and alteration of γ-glutamyl transferase gene methylation status in patients with hepatocellular carcinoma[J]. Cancer, 2000, 88:761-769. |
[66] | POMPELLA A, TATA D V, PAOLICCHI A, et al. Expression of γ-glutamyltransferase in cancer cells and its significance in drug resistance[J]. Biochemical Pharmacology, 2006, 71(3):231-238. |
[67] | LI L H, SHI W, WANG Z, et al. Sensitive fluorescence probe with long analytical wavelengths for γ-glutamyl transpeptidase detection in human serum and living cells[J]. Analytical Chemistry, 2015, 87(16):8353-8359. |
[1] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227. |
[7] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[8] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[9] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[10] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[11] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[12] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[13] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[14] | 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911. |
[15] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 884
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 733
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||