化工学报 ›› 2017, Vol. 68 ›› Issue (5): 1743-1756.DOI: 10.11949/j.issn.0438-1157.20161787
孙怡, 于利亮, 黄浩斌, 羊家威, 成少安
收稿日期:
2016-12-22
修回日期:
2017-02-01
出版日期:
2017-05-05
发布日期:
2017-05-05
通讯作者:
成少安
基金资助:
国家自然科学基金项目(51278448,51478414);国家重点研发计划项目(2016YFB0600505)。
SUN Yi, YU Liliang, HUANG Haobing, YANG Jiawei, CHENG Shao'an
Received:
2016-12-22
Revised:
2017-02-01
Online:
2017-05-05
Published:
2017-05-05
Supported by:
supported by the National Natural Science Foundation of China (51278448, 51478414) and the National Key Research and Development Plan (2016YFB0600505).
摘要:
工业生产活动产生的难降解有机废水需要有效处理,否则对生态环境和人类健康造成极大危害。高级氧化技术具有处理速率快、降解效率高、适用范围广等优点,是处理难降解有机废水最具应用前景的方法之一。但目前高级氧化技术仍存在高耗能、高成本等缺点,为了降低处理成本,近年来,以高级氧化技术为主结合生物处理方法的耦合/复合处理技术得到广泛研究。在综述高级氧化法处理难降解有机废水最新技术如等离子体高级氧化法、太阳光催化氧化和Bio-electro-Fenton氧化法等的基础上,重点介绍了高级氧化法复合处理技术和高级氧化法与生物法耦合处理技术,并结合高级氧化技术实用化发展方向,总结了复合/耦合高级氧化技术扩大化处理实例。本文还对高级氧化技术的研究方向和实用化的前景进行了展望。
中图分类号:
孙怡, 于利亮, 黄浩斌, 羊家威, 成少安. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756.
SUN Yi, YU Liliang, HUANG Haobing, YANG Jiawei, CHENG Shao'an. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5): 1743-1756.
[1] | RIBEIRO A R, NUNE O C, PEREIRA M F, et al. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU[J]. Environment International, 2015, 75: 33-51. |
[2] | OLLER I, MALATO S, SANCHEZ-PEREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review[J]. Science of the Total Environment, 2011, 409(20): 4141-4166. |
[3] | HAPEMAN C J, TORRENS A. Direct radical oxidation process[M]//KEARNEY K, ROBERT T. Pesticide Remediation Soils and Water. New York: Wiley, 1998: 61-180. |
[4] | ANGLADA A, URTIAGA A, ORTIZ I. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes[J]. Environmental Science & Technology, 2009, 43(6): 2035-2040. |
[5] | GERRITY D, GAMAGE S, HOLADY J C, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection[J]. Water Research, 2011, 45(5): 2155-2165. |
[6] | PEREIRA M C, OLIVEIRAl L C A, MURAD E. Iron oxide catalysts: Fenton and Fenton-like reactions—a review[J]. Clay Minerals, 2012, 47(3): 3713-3722. |
[7] | NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B Environmental, 2010, 99(1/2): 27-42. |
[8] | BRILLAS E, MARTINEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review[J]. Applied Catalysis B Environmental, 2015, s166/167: 603-643. |
[9] | EREN Z. Ultrasound as a basic and auxiliary process for dye remediation: a review[J]. Journal of Environmental Management, 2012, 104(104): 127-41. |
[10] | KIM K H, IHM S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review[J]. Journal of Hazardous Materials, 2011, 186(1): 16-34. |
[11] | PAOLA A D, GARCIA-LOPEZ E, MARCI G, et al. A survey of photocatalytic materials for environmental remediation[J]. Journal of Hazardous Materials, 2012, s211/212(2): 3-29. |
[12] | WANG L J, XU J L. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science & Technology, 2012, 42(3): 251-325. |
[13] | MAGUREANU M, MANDACHE N B, PARVULESCU V I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment[J]. Water Research, 2010, 44(11): 3445-3453. |
[14] | TIJANI J O, FATOBA O O, MADZIVIRE G, et al. A review of combined advanced oxidation technologies for the removal of organic pollutants from water[J]. Water Air & Soil Pollution, 2014, 225(2102): 1-30. |
[15] | MAGUREANU M, DOBRIN D, MANADACHE N B, et al. The mechanism of plasma destruction of enalapril and related metabolites in water[J]. Plasma Processes & Polymers, 2013, 10(5): 459-468. |
[16] | REDDY P M K, RAJU B R, KARUPPIAH J, et al. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor[J]. Chemical Engineering Journal, 2013, 217(1): 41-47. |
[17] | SANO N, YAMANE Y, HORI Y, et al. Application of multiwalled carbon nanotubes in a wetted-wall corona-discharge reactor to enhance phenol decomposition in water[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 9901-9909. |
[18] | REN J Y, WANG T C, QU G Z, et al. Evaluation and optimization of electrode configuration of multi-channel corona discharge plasma for dye-containing wastewater treatment[J]. Plasma Science & Technology, 2015, 17(12): 1053-1060. |
[19] | DOBRIN D, MAGUREANU M, BRADU C, et al. Degradation of methylparaben in water by corona plasma coupled with ozonation[J]. Environmental Science & Pollution Research International, 2014, 21(21): 12190-7. |
[20] | DORBRIN D, BRADU C, MAGUREANU M, et al. Degradation of diclofenac in water using a pulsed corona discharge[J]. Chemical Engineering Journal, 2013, 234(19): 389-396. |
[21] | LIU Y, WANG D, BING S, et al. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 1010-5. |
[22] | BUDIKANIA T, IBRAHIM, FEBIYANTI I A, et al. Degradation of linear alkylbenzene sulfonate with contact glow discharge electrolysis[C]//AIP Publishing LLC: HADIYANTO, 2015: 125-133. |
[23] | NARENGERILE, YUAN M H, WATANABE T. Decomposition mechanism of phenol in water plasmas by DC discharge at atmospheric pressure[J]. Chemical Engineering Journal, 2011, 168(3): 985-993. |
[24] | KRISHNA S, MASLANI A, IZDEBSKI T, et al. Degradation of Verapamil hydrochloride in water by gliding arc discharge[J]. Chemosphere, 2016, 152: 47-54. |
[25] | LESAGE O, FALK L, TATOULIAN M, et al. Treatment of 4-chlorobenzoic acid by plasma-based advanced oxidation processes[J]. Chemical Engineering & Processing, 2013, 72(7): 82-89. |
[26] | FENG X, YAN B, YANG Q, et al. Gas-liquid dielectric barrier discharge falling film reactor for the decoloration of dyeing water[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(2): 431-438. |
[27] | REDDY P, MAHAMMADUNNISA S, SUBRAHMANYAM C. Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: a green approach for the treatment of pesticide contaminated water[J]. Chemical Engineering Journal, 2014, 238(4): 157-163. |
[28] | RONG S, SUN Y, ZHAO Z, et al. Dielectric barrier discharge induced degradation of diclofenac in aqueous solution[J]. Water Science & Technology, 2014, 69(1): 76-83. |
[29] | LESAGE O, FALK L, TATOULIAN M, et al. Treatment of 4-chlorobenzoic acid by plasma-based advanced oxidation processes[J]. Chemical Engineering & Processing, 2013, 72(7): 82-89. |
[30] | 陈杰瑢. 低温等离子体化学及其应用[M]. 北京: 科学出版社, 2001. CHEN J R. Low Temperature Plasma Chemistry and Its Applications [M]. Beijing: Science Press, 2001. |
[31] | MOUELE E S, TIJANI J O, FATOBA O O, et al. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations—a critical review.[J]. Environmental Science and Pollution Research, 2015, 22(23): 18345-18362. |
[32] | KRISHNA S, MASLANI A, IZDEBSKI T, et al. Degradation of Verapamil hydrochloride in water by gliding arc discharge[J]. Chemosphere, 2016, 152: 47-54. |
[33] | VANRAES P, WILLEMS G, NIKIFOROV A, et al. Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge[J]. Journal of Hazardous Materials, 2015, 299: 647-655. |
[34] | BO J, ZHENG J, SHI Q, et al. Review on electrical dis charge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236(2): 348-368. |
[35] | HE D, SUN Y, LI S, et al. Decomposition of tetracycline in aqueous solution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst[J]. Journal of Chemical Technology & Biotechnology, 2014, 90(12): 2249-2256. |
[36] | FAGAN R, MCCORMACK D E, DIONYSIOU D D, et al. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern[J]. Materials Science in Semiconductor Processing, 2016, 42: 2-14. |
[37] | ALALM M G, TAWFIK A, OOKAWARA S. Solar photocatalytic degradation of phenol by TiO/AC prepared by temperature impregnation method[J]. Desalination & Water Treatment, 2016, 57(2): 835-844. |
[38] | LI F, KANG Y, CHEN M, et al. Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light[J]. Chemosphere, 2016, 150: 139-144. |
[39] | LI J, ZHONG J, SI Y, et al. Improved solar-driven photocatalytic performance of BiOI decorated TiO2 benefiting from the separation properties of photo-induced charge carriers[J]. Solid State Sciences, 2016, 52: 106-111. |
[40] | DENG W, CHEN D, HU J, et al. A general and green approach to synthesize monodisperse ceria hollow spheres with enhanced photocatalytic activity[J]. RSC Advances, 2015, 5(98): 80158-80169. |
[41] | KONSTANTINOS C C, TIZIANO M, ELZA B, et al. Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites[J]. Applied Catalysis B Environmental, 2016, 187: 171-180. |
[42] | BENHABILES O, MAHMOUDI H, LOUNICI H, et al. Effectiveness of a photocatalytic organic membrane for solar degradation of methylene blue pollutant[J]. Desalination & Water Treatment, 2015, 57(30): 14067-14076. |
[43] | SARAVANAKUMA K, RAMIAN M M, SURESH P, et al. Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants[J]. Journal of Alloys and Compounds, 2016, 664: 149-160. |
[44] | OFIARSKA A, PIECZYNSKA A, BORZYSZKOWSKA A F, et al. Pt-TiO2-assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight[J]. Chemical Engineering Journal, 2016, 285: 417-427. |
[45] | YANG G, WANG T, YANG B, et al. Enhanced visible-light activity of F-N co-doped TiO2, nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies[J]. Applied Surface Science, 2013, 287(24): 135-142. |
[46] | ZHAO X, CAI Z, WANG T, et al. A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene[J]. Applied Catalysis B Environmental, 2016, 187: 134-143. |
[47] | ZHAO Z, SUN Y, DONG F. Graphitic carbon nitride based nanocomposites: a review[J]. Nanoscale, 2015, 7(1): 15-37. |
[48] | GRABOWSKA E. Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review[J]. Applied Catalysis B Environmental, 2015, 186: 97-126. |
[49] | KUBACKA A, FERNANDEZ-GARCIA M, COLON G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chemical Reviews, 2012, 112(3): 1555-614. |
[50] | ZHANG J, WANG B, LI C, et al. Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties[J]. Journal of Environmental Sciences, 2014, 26(9): 1936-1942. |
[51] | FENG C H, LI F B, MAI H J, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment[J]. Environmental Science & Technology, 2010, 44(5): 1875-1880. |
[52] | HUANG L, CHENG S, CHEN G. Bioelectrochemical systems for efficient recalcitrant wastes treatment[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 481-491. |
[53] | WANF H, REN Z J. A comprehensive review of microbial electrochemical systems as a platform technology[J]. Biotechnology Advances, 2013, 31(8): 1796-1807. |
[54] | GUO X, ZHAN Y, CHEN C, et al. Simultaneous bioelectricity generation and biodegradability improvement of refinery wastewater using microbial fuel cell technology[J]. Desalination and Water Treatment, 2015, 53(10): 2740-2745. |
[55] | ZENG X, BOROLE A P, PAVLOSTATHIS S G. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell[J]. Environmental Science & Technology, 2015, 49(22): 13667-13675. |
[56] | PRADHAN H, JAIN S C, GHANGREKAR M M. Simultaneous removal of phenol and dissolved solids from wastewater using multichambered microbial desalination cell[J]. Applied Biochemistry & Biotechnology, 2015, 177(8): 1638-1653. |
[57] | NAN X, ZHANG Y, TAO H, et al. Bio-electro-Fenton system for enhanced estrogens degradation[J]. Bioresource Technology, 2013, 138(6): 136-140. |
[58] | LI Z, ZHOU S, YUAN Y, et al. A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation[J]. Chemical Engineering Journal, 2010, 163(1): 160-163. |
[59] | FENG C, LI F, LIU H, et al. A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process[J]. Electrochimica Acta, 2010, 55(6): 2048-2054. |
[60] | LING T, HUANG B, ZHAO M, et al. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES)[J]. Bioresource Technology, 2016, 203: 89-95. |
[61] | COMNINELLIS C, KAPALKA A, MALATO S, et al. Advanced oxidation processes for water treatment: advances and trends for R&D[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 769-776. |
[62] | HARICHANDRAN G. Sono-Fenton degradation of an azo dye, Direct Red[C]//PRASAD S. Proceedings of the IEEE Conference on Decision & Control. Institute of Electrical and Electronics Engineers, 2016, 29: 178-185. |
[63] | BOLOBAIEV J, TRAPIDO M, GOI A. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition[J]. Chemosphere, 2016, 153: 220-226. |
[64] | RIBEIRO K, ANDRADE T M D, FUJIWARA S T. Preparation and application of cellulose acetate/Fe films in the degradation of Reactive Black 5 dye through photo-Fenton reaction[J]. Environmental Technology, 2016, 37(13): 1664-1675. |
[65] | YAHYA M S, KARBANE M E, OTURAN N, et al. Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediates products analysis[J]. Environmental Technology, 2016, 37(10): 1276-1287. |
[66] | ALEXANDER J C, RAMIREZCORTINA C R. A comparative study: degradation of 2, 5-dichlorophenol in wastewater and distilled water by ozone and ozone-UV[J]. Ozone Science & Engineering, 2015, 38(3): 181-193. |
[67] | BUYUKADA M. Modeling of decolorization of synthetic reactive dyestuff solutions with response surface methodology by a rapid and efficient process of ultrasound-assisted ozone oxidation[J]. Desalination & Water Treatment, 2016, 57(32): 14973-14985. |
[68] | SOLIS R R, RIVAS F J, MARTINEZ-PIERNAS A, et al. Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification[J]. Chemical Engineering Journal, 2016, 292: 72-81. |
[69] | ERTUGAY N, ACAR F N. Decolorization of Direct Blue 71 using UV irradiation and ultrasound in the presence of TiO2 catalyst[J]. Desalination & Water Treatment, 2016, 57(20): 9318-9324. |
[70] | BALACHANDRAN R, PATTERSON Z, DEYMIER P, et al. Understanding acoustic cavitation for sonolytic degradation of p-cresol as a model contaminant.[J]. Chemosphere, 2016, 147: 52-59. |
[71] | NADDEO V, UYGUNER-DEMIREL C S, PRADO M, et al. Enhanced ozonation of selected pharmaceutical compounds by sonolysis[J]. Environmental Technology, 2015, 36(13-16): 1-23. |
[72] | SANTANA-MARTINERZ G, ROA-MORALES G, CAMPO E M D, et al. Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195: 246-256. |
[73] | SOUZA F L, SAEZ C, LLANO J, et al. Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2, 4-D[J]. Chemical Engineering Journal, 2015, 277: 64-69. |
[74] | JYOTHI K P, YESODHARAN S, YESODHARAN E P. Ultrasound (US), ultraviolet light (UV) and combination (US+UV) assisted semiconductor catalysed degradation of organic pollutants in water: oscillation in the concentration of hydrogen peroxide formed in situ[J]. Ultrasonics Sonochemistry, 2014, 21(5): 1787-1796. |
[75] | ZAPATA A, MALATO S, SANCHEZ-PEREZ J A, et al. Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water[J]. Catalysis Today, 2010, 151(1/2): 100-106. |
[76] | TORRES-SOCIAS D E, PRIETO-RODRIGUEZ L, ZAPATA A, et al. Detailed treatment line for a specific landfill leachate remediation. Brief economic assessment[J]. Chemical Engineering Journal, 2015, 261: 60-66. |
[77] | SILVA T F C V, FONSECA A, SARAIVA I, et al. Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment[J]. Chemical Engineering Journal, 2016, 283: 76-88. |
[78] | SANTIAGO D E, ARANA J, GONZALEZDIA O, et al. Treatment of wastewater containing imazalil by means of Fenton-based processes[J]. Desalination & Water Treatment, 2015, 57(30): 1-13. |
[79] | YANG B, ZUO J, LI P, et al. Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater[J]. Chemical Engineering Journal, 2016, 287: 30-37. |
[80] | MORAVIA W G, AMARAL M C S, LANGE L C. Evaluation of landfill leachate treatment by advanced oxidative process by Fenton's reagent combined with membrane separation system[J]. Waste Management, 2013, 33(1): 89-101. |
[81] | CORTEZ S, TEIXEIRA P, OLIVERIRA R, et al. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments[J]. Journal of Environmental Management, 2011, 92(3): 749-755. |
[82] | MAHMUD K, HOSSAIN M D, SHAMS S. Different treatment strategies for highly polluted landfill leachate in developing countries[J]. Waste Management, 2011, 32(11): 2096-2105. |
[83] | ZOU H, MA W, WANG Y. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation[J]. Archives of Environmental Protection, 2015, 41(4): 33-39. |
[84] | NJIKI A, KAMGANG-YOUBI G, LAMINSI S, et al. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain[J]. International Journal of Environmental Science and Technology, 2016, 1(13): 263-274. |
[85] | TAMARA B B, ISLA M A, ALFANO O M. Combined chemical oxidation and biological processes for herbicide degradation[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3): 718-725. |
[86] | MENG N C, BO J, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: a review[J]. Water Research, 2010, 44(10): 2997-3027. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[9] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[10] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[11] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[12] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[13] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[14] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[15] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||