化工学报 ›› 2017, Vol. 68 ›› Issue (S1): 9-17.DOI: 10.11949/j.issn.0438-1157.20170411
王玫, 牛栋华, 胡琪, 辛延波, 时洪亮, 黄安平
收稿日期:
2017-04-17
修回日期:
2017-04-20
出版日期:
2017-08-31
发布日期:
2017-08-31
通讯作者:
王玫,rose@buaa.edu.cn
基金资助:
国家自然科学基金项目(11574017,51372008)。
WANG Mei, NIU Donghua, HU Qi, XIN Yanbo, SHI Hongliang, HUANG Anping
Received:
2017-04-17
Revised:
2017-04-20
Online:
2017-08-31
Published:
2017-08-31
Supported by:
supported by the National Natural Science Foundation of China(11574017,51372008).
摘要:
在涉氢应用领域,氢及其同位素的渗透导致结构材料氢损伤、能源浪费及核污染等诸多问题,在结构材料表面覆盖阻氢涂层是解决氢渗透问题的重要技术手段。总结了传统阻氢涂层的特性及其阻氢效果,并阐明了传统阻氢涂层仍然存在的效率低及寿命短等问题。最新研究表明,石墨烯等二维材料薄膜具有很强的阻挡特性,多层堆垛结构效果尤其明显,可作为优异的阻氢材料,而传统阻氢涂层兼具有一定的吸附储氢性能。通过对氢渗透机理的分析提出引入二维材料作为阻氢层,并结合传统阻氢涂层的储氢特性构建新型阻氢结构模型,阐述了阻氢层的制备应用现状及储氢层的储氢机理,同时探讨了针对不同应用背景下新型阻氢结构的不同形式与应用效果,最后展望了新型阻氢结构涂层在不同应用领域下的应用前景。
中图分类号:
王玫, 牛栋华, 胡琪, 辛延波, 时洪亮, 黄安平. 二维材料调控阻氢涂层研究进展[J]. 化工学报, 2017, 68(S1): 9-17.
WANG Mei, NIU Donghua, HU Qi, XIN Yanbo, SHI Hongliang, HUANG Anping. Progress of hydrogen permeation barrier adjusted by two-dimensional materials[J]. CIESC Journal, 2017, 68(S1): 9-17.
[1] | MARCHI C S,SOMERDAY B P,TANG X, et al. Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels[J]. International Journal of Hydrogen Energy,2008,33(2):889-904. |
[2] | SMITH D L,KONYS J,MUROGA T,et al. Development of coatings for fusion power applications[J]. Journal of Nuclear Materials,2002,307(2):1314-1322. |
[3] | LI J,WANG Z F,LEI D Q,et al. Hydrogen permeation model of parabolic trough receiver tube[J]. Solar Energy,2012,86(5):1187-1196. |
[4] | TANAKA K,HAYASHI Y,KIMURA M,et al. Hydrogen absorbing and desorbing properties of Nd-Fe-B and Nd-Co-B amorphous alloys[J]. Journal of Alloys and Compounds,1997,253(1):101-105. |
[5] | BENAMATI G,CHABROL C,PERUJO A,et al. Development of tritium permeation barriers on Al base in Europe[J]. Journal of Nuclear Materials,1999,271(1):391-395. |
[6] | AIELLO A,CIAMPICHETTI A,BENAMATI G. An overview on tritium permeation barrier development for WCLL blanket concept[J]. Journal of Nuclear Materials,2004,329(2):1398-1402. |
[7] | 李兴彦,黄永章,张新,等. 防氢渗透涂层的研究进展[J]. 金属功能材料,2011,18(2):74-78. LI X Y,HUANG Y Z,ZHANG X, et al. Review on tritium penetration barrier[J]. Metallic Functional Materials,2011,18(2):74-78. |
[8] | 李群. 典型氧化物氢同位素渗透阻挡涂层研究[D]. 北京:北京科技大学,2016. LI Q. Study on typical oxide hydrogen-isotopes permeation barriers[D]. Beijing:University of Science & Technology Beijing,2016. |
[9] | HUANG Q Y,SONG Y,GUO Z H,et al. The R&D on multi-functional coatings for liquid metal lithium-lead blankets of fusion reactors[J]. Chinese Journal of Nuclear Science and Engineering,2008,28(3):256-262. |
[10] | WANG P,LIU J,WANG J, et al. Investigation of SiC films deposited onto stainless steel and their retarding effects on tritium permeation interaction of hydrogen plasma with SiC/SiC composite[J]. Surface and Coating Technology,2000,128/129:99-104. |
[11] | 姚振宇,严辉,谭利文,等. 用SiC薄膜作防氚渗透阻挡层的研究[J]. 核聚变与等离子体物理,2002,22(2):65-70. YAO Z Y,YAN H,TAN L W,et al. Research on SiC film as tritium permeation barrier[J]. Nuclear Fusion and Plasma Physics,2002,22(2):65-70. |
[12] | CHIKADA T,SUZUKI A,TERAI T. Deuterium permeation and thermal behaviors of amorphous silicon carbide coatings on steels[J]. Fusion Engineering and Design,2011,86:2192-2195. |
[13] | NEMANIC V,MCGUINESS P,DANEU N,et al. Hydrogen permeation through silicon nitride films[J]. Journal of Alloys and Compounds,2012,539:184-189. |
[14] | ZHANG R Q,LIU Y G,HUANG N K. Effects of hydrogen ion implantation on TiC-C coating of stainless steel[J]. Journal of Iron & Steel Research International,2008,15(4):77-81. |
[15] | CHIKADA T,NAITOH S,SUZUKI A,et al. Deuterium permeation through erbium oxide coatings on RAFM steels by a dip-coating technique[J]. Journal of Nuclear Materials,2013,442:533-537. |
[16] | SUBANOVIC M,NAUMENKO D,KAMRUDDIN M,et al. Blistering of MCrAlY-coatings in H2/H2O-atmospheres[J]. Corrosion Science,2009,51(3):446-450. |
[17] | XIE D G,WANG Z G,SUN J,et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials,2015,14(9):899-903. |
[18] | PRICE H,FORRISTALL R,WENDELIN T,et al. Field survey of parabolic trough receiver thermal performance[C]//Proceedings of the ASME International Solar Energy Conference. Denver,2006:109-116. |
[19] | http://www.spaceman.com.cn/i.php?id=156. |
[20] | http://www.cspplaza.com/article-2513-1.html. |
[21] | NAIR R R,BLAKE P,GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008,320(5881):1308. |
[22] | BALANDIN A A,GHOSH S,BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008,8(3):902-907. |
[23] | LEE C,WEI X D,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,321(5887):385-388. |
[24] | MIAO M,NARDELLI M B,WANG Q,et al. First principles study of the permeability of graphene to hydrogen atoms[J]. Chysical Chemistry Chemical Physics,2013,15(38):16132-16137. |
[25] | BUNCH J S,VERBRIDGE S S,ALDEN J S,et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters,2008,8(8):2458-2462. |
[26] | TSETSERIS L,PANTELIDES S T. Graphene:an impermeable or selectively permeable membrane for atomic species?[J]. Carbon,2014,67:58-63. |
[27] | NOVOSELOV K S,JIANG D,SCHEDIN F,et al. Two-dimensional atomic crystals[J]. Proc. Natl. Acad. Sci.,2005,102(30):10451-10453. |
[28] | GEIM A K,GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature,2013,499(25):419-425. |
[29] | MIURA Y,KASAI H,DINO W A,et al. Effective pathway for hydrogen atom adsorption on graphene[J]. Journal of the Physical Society of Japan,2003,72(5):995-997. |
[30] | VIKAS B. Impermeability of graphene and its applications[J]. Carbon,2013,62:1-10. |
[31] | HU S. Proton transport through two-dimensional materials[D]. Manchester:University of Manchester,2014. |
[32] | HU S,LOZADA-HIDALGO M,WANG F C,et al. Proton transport through one-atom-thick crystals[J]. Nature,2014,516(7530):227-230. |
[33] | SEEL M,PANDEY R. Proton and hydrogen transport through two-dimensional monolayers[J]. 2D Materials,2016,3(2):025004. |
[34] | ACHTYL J L,UNOCIC R R,XU L J, et al. Aqueous proton transfer across single-layer graphene[J]. Nature Communications,2015,6:6539. |
[35] | LOZADA-HIDALGO M,HU S,MARSHALL O,et al. Sieving hydrogen isotopes through two-dimensional crystals[J]. Science,2016,351(6268):68-70. |
[36] | CELEBI K,BUCHHEIM J,WYSS R M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science,2014,344(6181):289-292. |
[37] | O'HERN S C,JANG D,BOSE S, et al. Nanofiltration across defect-sealed nanoporous monolayer graphene[J]. Nano Letters,2015,15(5):3254-3260. |
[38] | BOUTILIER MICHAEL S H,SUN C Z,O'HERN S C,et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation[J]. ACS Nano,2014,8(1):841-849. |
[39] | YANG X W,QIU L,CHENG C,et al. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films[J]. Angewandte Chemie-International Edition,2011,50(32):7325-7328. |
[40] | YANG X,CHENG C,WANG Y,et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537. |
[41] | 宋文海,杜家驹. 陶瓷-金属复合体系氢同位素渗透模型[J]. 核聚变与等离子体物理,1998,18(3):9-16. SONG W H,DU J J. A model for hydrogen isotope permeation through metals with ceramic film barriers[J]. Nuclear Fusion and Plasma Physics,1998,18(3):9-16. |
[42] | 李勇峰. 氢在钢中的渗透特性及镀层阻氢渗透机理的研究[D]. 上海:华东理工大学,2012. LI Y F. Research on hydrogen permeation characteristic in steels and hydrogen permeation resistance mechanism of plating[D]. Shanghai:East China University of Science and Technology,2012. |
[43] | GU P C,ZHANG K L,FENG Y L, et al. Recent progress of two-dimensional layered molybdenum disulfide[J]. Acta Physica Sinica,2016,65(1):018102. |
[44] | KIRKLAND N T,SCHILLER T,MEDHEKAR N,et al. Exploring graphene as a corrosion protection barrier[J]. Corros. Sci.,2012,56:1-4. |
[45] | LEENAERTS O,PARTOENS B,PEETERS F M. Graphene:a perfect nanoballoon[J]. Applied Physics Letters,2008,93(19):193107. |
[46] | GEORGIOU T,BRITNELL L,BLAKE P,et al. Graphene bubbles with controllable curvature[J]. Appl. Phys. Lett.,2011,99(9):093103. |
[47] | JOHN R. ASHOKREDDY A,VIJAYAN C,et al. Single-and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition[J]. Nanotechnology,2011,22(16):165701. |
[48] | YUAN G D,ZHANG W J,YANG Y,et al. Graphene sheets via microwave chemical vapor deposition[J]. Chem. Phys. Lett.,2009,467(4):361-364. |
[49] | LI X S,ZHU Y W,CAI W W,et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Letters, 2009,9(12):4259-4363. |
[50] | HU B,AGO H,ITO Y,et al. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD[J]. Carbon,2012,50:57-65. |
[51] | LI X,CAI W,COLOMBO L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters,2009,9(12):4268-4272. |
[52] | ZHU Y X,DUAN C Y,LIU H Y,et al. Graphene coating for anti-corrosion and the investigation of failure mechanism[J]. J. Phys. D:Appl. Phys., 2017,50:114001. |
[53] | YOON T,MUN J H,CHO B J, et al. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers[J]. Nanoscale,2014,6(1):151-156. |
[54] | PRASAI D,TUBERQUIA J C,HARL R,et al. Graphene:corrosion-inhibiting coating[J]. ACS Nano,2012,6(2):1102-1108. |
[55] | HSIEH Y P,HOFMANN M,CHANG K W,et al. Complete corrosion inhibition through graphene defect passivation[J]. ACS Nano,2014,8(1):443-448. |
[56] | YE X H,LONG J Y,LIN Z,et al. Direct laser fabrication of large-area and patterned graphene at room temperature[J]. Carbon,2014,68:784-790. |
[57] | YE X H,LIN Z,ZHANG H J,et al. Protecting carbon steel from corrosion by laser in situ grown graphene films[J]. Carbon,2015,94:326-334. |
[58] | WANG L J,LI L,YU J F,et al. Large-area graphene coating via superhydrophilic-assisted electro-hydrodynamic spraying deposition[J]. Carbon, 2014,79:294-301. |
[59] | KIM H W,YOON H W,YOON S M. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science,2013,342(6154):91-95. |
[60] | CHENG C,JIANG G,GARVEY C J,et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing[J]. Science Advances,2016,2(2):e1501272. |
[61] | 张瑞谦. SiC-C涂层阻氢性能的研究[D]. 成都:四川大学,2007. ZHANG R Q. Study on hydrogen retarding property of SiC-C films[D]. Chengdu:Sichuan University,2007. |
[62] | TAMURA M,EGUCHI T. Nanostructured thin films for hydrogen-permeation barrier[J]. Journal of Vacuum Science & Technology A,2015,33(4):041503. |
[63] | ZHANG R Q,LIU Y G,HUANG N K. Effects of hydrogen ion implantation on TiC-C coating of stainless steel[J]. Journal of Iron & Steel Research International,2008,15(4):77-81. |
[64] | TAMURA M,NOMA M,YAMASHITA M,et al. Characteristic change of hydrogen permeation in stainless steel plate by BN coating[J]. Surface & Coatings Technology, 2014,260:148-154. |
[65] | 何迪. Cr2O3/Al2O3阻氢渗透涂层制备与性能研究[D]. 北京:北京有色金属研究总院,2014. HE D. Study on the preparation and property of the Cr2O3/Al2O3 hydrogen permeation barrier[D]. Beijing:General Research Institute for Nonferrous Metals,2014. |
[66] | 郜健. 氧化铝/氧化锆复合涂层的制备及其氢渗透性能研究[D]. 北京:北京有色金属研究总院,2014. GAO J. Investigation of preparation and hydrogen permeation properties of alumina/zirconia composite coating[D]. Beijing:General Research Institute for Nonferrous Metals,2014. |
[67] | LI Q,WANG J,XIANG Q Y,et al. Study on influence factors of permeation reduction factor of Al2O3-hydrogen isotopes permeation barriers[J]. International Journal of Hydrogen Energy, 2016,41(7):4326-4331. |
[68] | ZHANG G K,DOU S P,LU Y J,et al. Mechanism for adsorption,dissociation and diffusion of hydrogen permeation in hydrogen permeation barrier of α-Al2O3:the role of crystal orientation[J]. International Journal of Hydrogen Energy, 2014,39(1):610-619. |
[69] | TANABE T. Tritium fuel cycle in ITER and DEMO:issues in handling large amount of fuel[J]. Journal of Nuclear Materials, 2013,438:S19-S26. |
[70] | LI J,WANG Z F,LEI D Q,et al. Hydrogen permeation model of parabolic trough receiver tube[J]. Solar Energy, 2012,86:1187-1196. |
[71] | PEREIRA P A S,FRANCO C S G,GUERRA FILHO J L M,et al. Hydrogen effects on the microstructure of a 2.25Cr-1Mo-0.25V steel welded joint[J]. International Journal of Hydrogen Energy,2015,40(47):17136-17143. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[4] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[5] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[6] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[11] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[12] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[13] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[14] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[15] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||