[1] |
HOLLOWAY S. Storage of fossil fuel-derived carbon dioxide beneath the surface of the Earth[J]. Annual Review Energy Environment, 2001, 26:145-166.
|
[2] |
WEST J M, PEARCE J, BENTHAM M, et al. Issue profile:environmental issues and the geological storage of CO2[J]. European Environment, 2005, 15:250-259.
|
[3] |
GENTZIS T. Subsurface sequestration of carbon dioxide-an overview from an Alberta (Canada) perspective[J]. International Journal of Coal Geology, 2000, 43:287-305.
|
[4] |
GOUGH C. State of the art in carbon dioxide capture and storage in the UK:an experts' review[J]. International Journal of Greenhouse Gas Control, 2008, 2:155-168.
|
[5] |
HOLLOWAY S. Underground sequestration of carbon dioxide-a viable greenhouse gas mitigation option[J]. Energy, 2005, 30:2318-2333.
|
[6] |
METZ B, DAVIDSON O R, BOSCH P R, et al. Contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge:Cambridge University Press, 2007.
|
[7] |
BROWN D. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, 2000:233-238.
|
[8] |
PRUESS K. Enhanced geothermal systems (EGS) using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35:351-367.
|
[9] |
PRUESS K. Enhanced geothermal systems (EGS) comparing water with CO2 as heat transmission fluids[R]. Lawrence Berkeley National Laboratory, 2007.
|
[10] |
PRUESS K. On the feasibility of using supercritical CO2 as heat transmission fluid in an engineered hot dry rock geothermal system thirty-first workshop on geothermal reservoir engineering:SGP-TR-179[R]. California:Stanford University, 2006.
|
[11] |
PRUESS K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6):1446-1454.
|
[12] |
MAJER E L, BARIA R, STARK M, et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36:185-222.
|
[13] |
GLANZ J. Deep in bedrock, clean energy and quake fears[N]. New York:New York Times, 2009-06-23(1).
|
[14] |
RANDOLPH J B, SAAR M O. Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations:a comparison with enhanced geothermal systems[J]. GRC Trans., 2010, 34:433-438.
|
[15] |
RANDOLPH J B, SAAR M O. Combining geothermal energy capture with geologic carbon dioxide sequestration[J]. Geophys Res. Lett., 2011, 38(10):415-421.
|
[16] |
RANDOLPH J B, SAAR M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations:implications for CO2 sequestration[J]. Energy Procedia, 2011, 4:2206-2213.
|
[17] |
ZHANG L, EZEKIEL J, LI D X, et al. Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China[J]. Applied Energy, 2014, 122:237-246.
|
[18] |
XU T F, FENG G H, SHI Y. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration, 2014, 144:179-193.
|
[19] |
陈继良, 罗良, 蒋方明. 热储周围岩石热补偿对增强型地热系统采热过程的影响[J]. 计算物理, 2013, 30(6):862-870. CHEN J L, LUO L, JIANG F M. Thermal compensation of rocks encircling heat reservoir in heat extraction of enhanced geothermal system[J]. Chinese Journal of Computational Physics, 2013, 30(6):862-870.
|
[20] |
陈继良, 蒋方明. 增强型地热系统热开采性能的数值模拟分析[J]. 可再生能源, 2013, 31(12):111-117. CHEN J L, JIANG F M. A numerical study on heat extraction performance of enhanced geothermal systems[J]. Renewable Energy Resources, 2013, 31(12):111-117.
|
[21] |
封官宏, 李佳琦, 许天福, 等. 二氧化碳羽流地热系统中储层物性参数对热提取率的影响[J]. 可再生能源, 2013, 31(7):85-92. FENG G H, LI J Q, XU T F, et al. Effects of property of reservoir on heat extraction in CO2 plume geothermal system[J]. Renewable Energy Resources, 2013, 31(7):85-92.
|
[22] |
魏铭聪, 杨冰, 许天福, 等. 二氧化碳羽流地热系统中井间距和储层渗透率对热提取率的影响:以松辽盆地为例[J]. 地质科技情报, 2015, 34(2):188-193. WEI M C, YANG B, XU T F, et al. Effects of well spacing and reservoir permeability on heat extraction in CO2 plume geothermal system:a case study of Songliao basin[J]. Geological Science and Technology Information, 2015, 34(2):188-193.
|
[23] |
任韶然, 崔国栋, 李德祥, 等. 注超临界CO2开采高温废弃气藏地热机制与采热能力分析[J]. 中国石油大学学报(自然科学版), 2016, 40(2):91-98. REN S R, CUI G D, LI D X, et al. Development of geothermal energy from depleted high temperature gas reservoir via supercritical CO2 injection[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(2):91-98.
|
[24] |
GARAPATI N, RANDOLPH J B, JOSE L, et al. CO2-plume geothermal (CPG) heat extraction in multi-layered geologic reservoirs[J]. Energy Procedia, 2014, 63:7631-7643.
|
[25] |
GARAPATI N, RANDOLPH J B, SAAR M O. Brine displacement by CO2, energy extraction rates, and lifespan of a CO2-limited CO2-Plume Geothermal (CPG) system with a horizontal production well[J]. Geothermics, 2015, 55:182-194.
|
[26] |
SHI Y, WANG F G, YANG Y L, et al. Use of a CO2 geological storage system to develop geothermal resources:a case study of a sandstone reservoir in the Songliao basin of northeast China[M]//HOU M Z, XIE H P, WERE P. Clean Energy Systems in the Subsurface:Production, Storage and Conversion. Berlin:Springer, 2013:89-103.
|
[27] |
ADAMS B M, KUEHN T H, BIELICKI J M, et al. On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems[J]. Energy, 2014, 69:409-418.
|
[28] |
ADAMS B M, KUEHN T H, BIELICKI J M, et al. A comparison of electric power output of CO2Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions[J]. Applied Energy, 2015, 140:365-377.
|
[29] |
CHEN J L, JIANG F M. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir[J]. Heat and Mass Transfer, 2016, 52:255-267.
|
[30] |
JIANG F M, CHEN J L, HUANG W B, et al. A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy, 2014, 72:300-310.
|
[31] |
CHEN J L, JIANG F M. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable Energy, 2015, 74:37-48.
|
[32] |
CAO W J, HUANG W B, JIANG F M. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International Journal of Heat and Mass Transfer, 2016, 92:1205-1217.
|
[33] |
FAGERLUND F F, NIEMI A, ODEN M. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media[J]. Advances in Water Resources, 2006, 29(11):1705-1730
|
[34] |
杨艳林, 靖晶, 王福刚, 等. CO2增强型地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, (7):1130-1137. YANG Y L, JING J, WANG F G, et al. Optimal design of well spacing on CO2 enhanced geothermal[J]. Acta Energiae Solaris Sinica, 2014, (7):1130-1137.
|
[35] |
张俊虎, 刘君. 煤层气井网布置优化设计的探讨[J]. 科技情报开发与经济, 2008, (10):210-212. ZHANG J H, LIU J. Probe into the optimal design of coal-bed methane well network[J]. Sci-tech Information Development & Economy, 2008, (10):210-212.
|